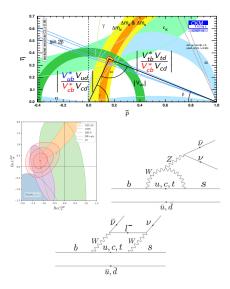
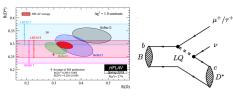

Semileptonic and missing energy results from early Belle II data

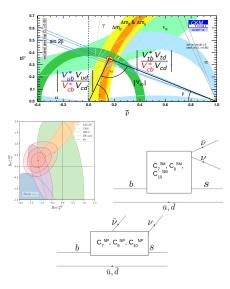


Motivation

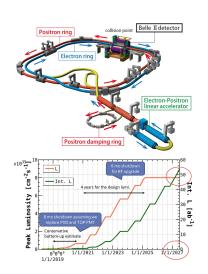
Why semileptonic / missing energy decays?

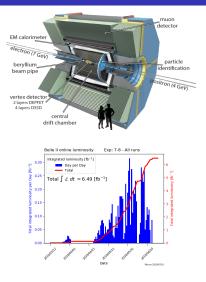
- Precision measurements of the SM:
 - Semileptonic decays are used to determine CKM matrix elements which are essential in global fits for the CKM parameters.
- Excellent probe of new physics:
 - Potential NP in $B \rightarrow D^* \tau \nu_{\tau}$.
 - NP hints in $b \rightarrow sll$ should be seen in $b \rightarrow s\nu\bar{\nu}$





Motivation

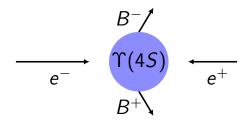

Why semileptonic / missing energy decays?


- Precision measurements of the SM:
 - Semileptonic decays are used to determine CKM matrix elements which are essential in global fits for the CKM parameters.
- Excellent probe of new physics:
 - Potential NP in $B \rightarrow D^* \tau \nu_{\tau}$.
 - ▶ NP hints in $b \rightarrow sll$ should be seen in $b \rightarrow s\nu\bar{\nu}$

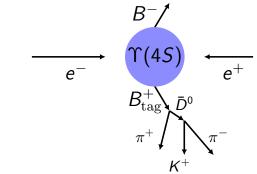
The Belle II experiment

• Results here will use only 0.41fb⁻¹

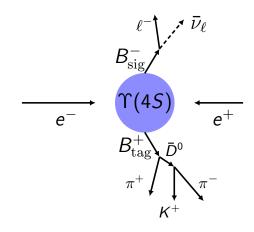
Belle II and semileptonic B meson reconstruction

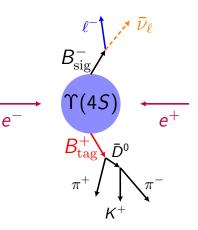

Semileptonic B reconstruction

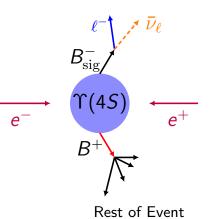
 Collide e⁺ and e⁻ at the energy to make Υ(4S) particles

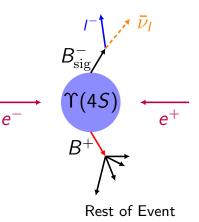


Belle II and semileptonic B meson reconstruction

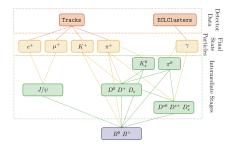

- Collide e⁺ and e⁻ at the energy to make Υ(4S) particles
- $\Upsilon(4S)$ decays to B^+B^- and $B^0\bar{B}^0$ >96% of the time.


- Collide e⁺ and e⁻ at the energy to make Υ(4S) particles
- $\Upsilon(4S)$ decays to B^+B^- and $B^0\bar{B}^0$ >96% of the time.
- Tagged approach:
 - Reconstruct one B meson as tag-side (B_{tag})

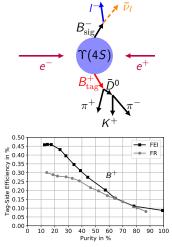

- Collide e⁺ and e⁻ at the energy to make Υ(4S) particles
- $\Upsilon(4S)$ decays to B^+B^- and $B^0\bar{B}^0$ >96% of the time.
- Tagged approach:
 - Reconstruct one B meson as tag-side (B_{tag})
 - Study remaining B meson as signal (B_{sig})


- Collide e⁺ and e⁻ at the energy to make Υ(4S) particles
- $\Upsilon(4S)$ decays to B^+B^- and $B^0\bar{B}^0$ >96% of the time.
- Tagged approach:
 - Reconstruct one B meson as tag-side (B_{tag})
 - Study remaining B meson as signal (B_{sig})
 - ► Flavour and Kinematic constraints: $B_{tag}^+ \implies B_{sig}^$ $p_{\nu} = p_{e^+e^-} - p_{\ell^-} - p_{B^+}$

- Collide e⁺ and e⁻ at the energy to make Υ(4S) particles
- $\Upsilon(4S)$ decays to B^+B^- and $B^0\overline{B}^0$ >96% of the time.
- Tagged approach:
 - Reconstruct one B meson as tag-side (B_{tag})
 - Study remaining B meson as signal (B_{sig})
 - ► Flavour and Kinematic constraints: $B^+_{tag} \implies B^-_{sig}$ $p_{\nu} = p_{e^+e^-} - p_{\ell^-} - p_{B^+}$
- Untagged approach:
 - Reconstruct signal first.

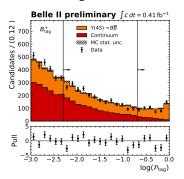


- Collide e⁺ and e⁻ at the energy to make Υ(4S) particles
- $\Upsilon(4S)$ decays to B^+B^- and $B^0\bar{B}^0$ >96% of the time.
- Tagged approach:
 - Reconstruct one B meson as tag-side (B_{tag})
 - Study remaining B meson as signal (B_{sig})
 - ► Flavour and Kinematic constraints: $B^+_{tag} \implies B^-_{sig}$ $p_{\nu} = p_{e^+e^-} - p_{\ell^-} - p_{B^+}$
- Untagged approach:
 - Reconstruct signal first.
 - Inclusively sum over all tracks and clusters in remaining event or use signal only information e.g p^{*}_ℓ.

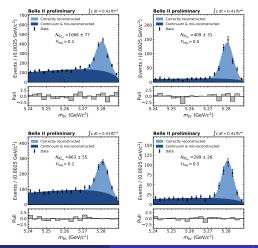

Full Event Interpretation

- Trains $\mathcal{O}(200)$ decay channel classifiers.
- Classifiers are used in a hierarchical reconstruction of order $\mathcal{O}(10,000)$ *B* meson decay chains.

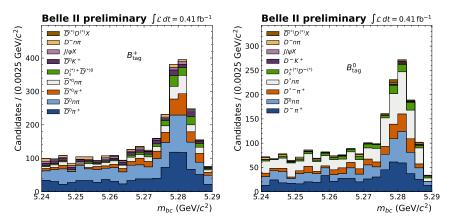
 FEI outperforms predecessor algorithm Full Reconstruction.


Keck, T. et al. Comput Softw Big Sci (2019) 3: 6.

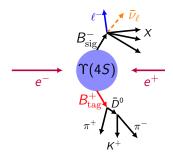
Produced with Belle data


Hadronic tag-side reconstruction in early data

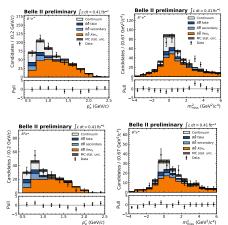
 B classifier value, *P*, discriminates correctly reconstructed tag-sides from background.


• Select a high purity sample using a selection on \mathcal{P} .

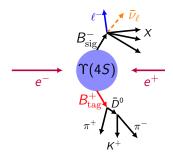
Determine the correctly reconstructed tag-side yield by fitting $m_{bc} = \sqrt{E_{beam}^2/4 - p_{B_{tag}}^{*2}}$.


Hadronic tag-sides by decay mode

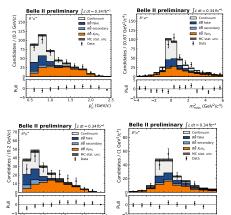
- 29 and 26 hadronic B^+ and B^0 tag-side decay modes are reconstructed.
- Contribution of different categories of modes are shown for data below.


First look at $B \rightarrow X l \nu$ decays using hadronic tagging

- Perform first Belle II signal side reconstruction with tagging.
- Study B → Xlν given the large branching fraction (~20%)


• Highest p_{ℓ}^* lepton selected with $p_{\ell}^* > 0.6 \text{ GeV/c}, \ M_{bc}^{\text{tag}} > 5.27 \text{GeV/c}$

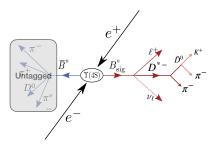
$$m_{\rm miss}^2 = \left(p_{e^+e^-}^* - p_{B_{\rm tag}}^* - p_{\ell}^* - p_X^*\right)^2$$


First look at $B \rightarrow X l \nu$ decays using hadronic tagging

- Perform first Belle II signal side reconstruction with tagging.
- Study B → Xlν given the large branching fraction (~20%)

• Highest p_{ℓ}^* lepton selected with $p_{\ell}^* > 0.6 \text{ GeV/c}, \ M_{bc}^{\text{tag}} > 5.27 \text{GeV/c}$

$$m_{
m miss}^2 = \left(p_{e^+e^-}^* - p_{B_{
m tag}}^* - p_{\ell}^* - p_X^*\right)^2$$


p,, (GeV/c)

 m_{miss}^2 (GeV²/c⁴)

Untagged $B^0
ightarrow D^{-*} l^+
u$

Untagged $B^0 \rightarrow D^{-*} I^+ \nu$ selection

- Reconstruct D^{*}l
 v decays in early phase III data.
- An essential test of tracking and PID for leptons.
- The mode will be used in $|V_{cb}|$ and $R(D^*)$ measurements.

• Selection outlined below.

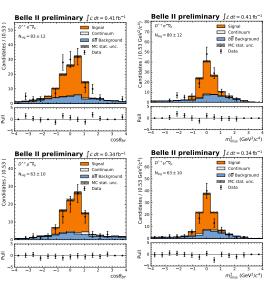
Particle	Selection
Tracks	IP in $z < 2$ cm
Tracks	IP in <i>r</i> - ϕ plane $<$ 0.5 cm
l	$1.2 < p_\ell^* < 2.4~{ m GeV}/c$
е	Electron likelihood > 0.85
μ	Muon likelihood > 0.9
slow π	$p_\pi^* < 0.5 { m GeV}/c$
D^0	$1.85 < M_D < 1.88~{ m GeV}/c^2$
D^*	$0.144 < M_{D^*} - M_D < 0.148 ~{ m GeV}/c^2$
D^*	$p_{D^*} < 2.5 \; \mathrm{GeV}/c$

 $\mathsf{IP}=\mathsf{Impact}\;\mathsf{Parameter}$

• In addition, suppression of $e^+e^-
ightarrow qar q$ using Fox-Wolfram moments.

$B^0 \rightarrow D^{-*} l^+ \nu$ reconstruction

- It is possible to compute cos θ_{BY} in the CoM frame (*).
- For signal this physically constrained to lie in the region (-1,1).


Starting from

$$0 = p_{\nu}^2 = (p_B^* - p_Y^*)^2$$

one can derive:

$$\cos heta_{BY} = rac{2E_B^*E_Y^* - m_B^2 - m_Y^2}{2|ec{p}_B^*||ec{p}_Y^*|}$$

- Alternatively use $m_{\text{miss}}^2 = ((E_{\text{beam}}/2, 0, 0, 0) p_Y^*)^2$
- ⇒ B mesons assumed at rest in the CM frame.

William Sutcliffe

Prospects for the future

• There are a number of semileptonic measurements for which Belle II is essential.

Observables	Belle	Belle II	
	(2017)	5 ab^{-1}	50 ab^{-1}
$ V_{cb} $ incl.	$42.2 \cdot 10^{-3} \cdot (1 \pm 1.8\%)$	1.2%	-
$ V_{cb} $ excl.	$39.0 \cdot 10^{-3} \cdot (1 \pm 3.0\%_{\text{ex.}} \pm 1.4\%_{\text{th.}})$	1.8%	1.4%
$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} \cdot (1 \pm 6.0\%_{\text{ex.}} \pm 2.5\%_{\text{th.}})$	3.4%	3.0%
$ V_{ub} $ excl. (WA)	$3.65 \cdot 10^{-3} \cdot (1 \pm 2.5\%_{\text{ex.}} \pm 3.0\%_{\text{th.}})$	2.4%	1.2%
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$91 \cdot (1 \pm 24\%)$	9%	4%
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%
$R(B \to D \tau \nu)$ (Had. tag)	$0.374 \cdot (1 \pm 16.5\%)$	6%	3%
$R(B \to D^* \tau \nu)$ (Had. tag)	$0.296 \cdot (1 \pm 7.4\%)$	3%	2%

• In addition, the measurement of rare $b \rightarrow s\nu\bar{\nu}$ will provide a critical orthogonal probe to $b \rightarrow sll$ decays. Prospects for golden channels below.

Observables	Belle	Belle II	
	(2017)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu})$	$< 40 \times 10^{-6}$	25%	9%
$\mathcal{B}(B \to K^+ \nu \overline{\nu})$	$< 19 imes 10^{-6}$	30%	11%

Belle II physics book [arXiv1808.10567]

Conclusion

- First measurements of $B \to D^* I \nu$ and $B \to X I \nu$ decays with the full Belle II detector.
- Tag-side reconstruction, a critical Belle II technique, is performing well in early data.
- We plan to calibrate the tag-side reconstruction with $B \rightarrow X I \nu$ decays.
- Only have shown results here for 0.41 fb⁻¹ we will update soon to the early dataset of 6.43 fb⁻¹.
- Exciting semileptonic and missing energy results to come with more Belle II data!