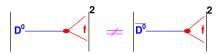
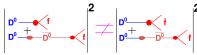
Charm mixing and CP violation at LHCb

Prasanth Krishnan K P
(On behalf of LHCb Collaboration)

IFJ PAN Krakow

July 11, 2019


EPS-HEP 2019 Ghent University, Belgium



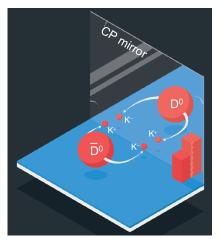
Outline

Direct CPV:

- ▶ Observation of *CP* violation in neutral charm meson decays ⇒ the ΔA_{CP} measurement
- ▶ Search for *CP* violation in $D^+ \to K_S^0 K^+$, $D_S^+ \to K_S^0 \pi^+$, and $D^+ \to \phi \pi^+$ decays

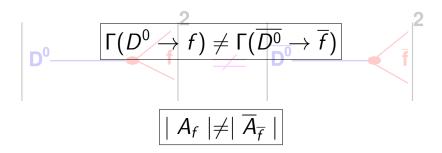
Mixing and indirect CPV:

- ▶ Time dependent CPV in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays \Rightarrow the A_{Γ} measurement
- Model-independent Bin-flip method for $D^0 o K_S^0\pi^+\pi^$ decays



CPV in charm decays

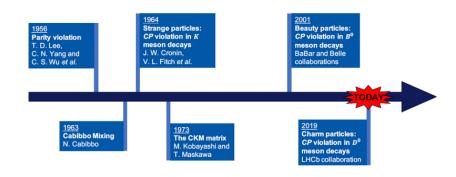
- Complementary to CPV in beauty or kaon systems
- ▶ Prediction \rightarrow very small $\left[\mathcal{O}(10^{-4}) \mathcal{O}(10^{-3})\right]^{[1]}$
- New physics can be hidden in loops
- Large production cross section in LHCb allows us to reach the desired sensitivity to observe charm CPV
- CPV is finally discovered in charm decays at LHCb in 2019


[1] https://arxiv.org/abs/hep-ph/0609178 https://arxiv.org/abs/1706.07780 [hep-ph] https://arxiv.org/abs/1112.5451 [hep-ph]

Direct CPV

Search for A_{CP} in two-body decays

Most precise


https://hflav-eos.web.cern.ch/hflav-eos/charm/

	LHCb Run I	Belle	BABAR	BESIII
	LHCb	BELLE	BABAR	₽€SII
Modes		A _{CP} (%)		
$D^0 o K^+K^-$	$0.04 \pm 0.12 \pm 0.10$	$-0.32 \pm 0.21 \pm 0.09$	$0.00 \pm 0.34 \pm 0.13$	
$D^0 o \pi^+\pi^-$	$0.07 \pm 0.14 \pm 0.11$	$0.55 \pm 0.36 \pm 0.09$	$-0.24 \pm 0.52 \pm 0.22$	
$D^0 o K_S^0 K_S^0$	$-2.9 \pm 5.2 \pm 2.2$	$0.00 \pm 1.53 \pm 0.17$		
$D^0 ightarrow \pi^0 \pi^0$		$-0.03 \pm 0.64 \pm 0.10$		
$D^+ o \pi^+ \pi^0$		$2.31 \pm 1.24 \pm 0.23$		
$D^+ ightarrow K_S^0 K^+$	$0.03 \pm 0.17 \pm 0.14$	$0.08 \pm 0.28 \pm 0.14$	$0.46 \pm 0.36 \pm 0.25$	$-1.5 \pm 2.8 \pm 1.6$
$D^+ o \phi \pi^+$	$-0.04 \pm 0.14 \pm 0.14$	$0.51 \pm 0.28 \pm 0.05$		
$D_s^+ o K_S^0\pi^+$	$0.38 \pm 0.46 \pm 0.17$	$5.45 \pm 2.50 \pm 0.33$	$0.3 \pm 2.0 \pm 0.3$	
$D^+ o \eta^{'} \pi^+$	$-0.61 \pm 0.72 \pm 0.55 \pm 0.12$	$-0.12 \pm 1.12 \pm 0.17$		
$D_s^+ o \eta^{'} \pi^+$	$-0.82 \pm 0.36 \pm 0.24 \pm 0.27$			

• All results are consistent with no CP violation hypothesis

Observation of CPV in neutral charm meson decays

Observation of CPV in charm- ΔA_{CP} measurement

- ▶ Data sample: Full Run II data of 5.9 fb⁻¹ Phys. Rev. Lett. 122, 211803
- ► Charm tagging:
 - ▶ **Prompt:** coming from primary vertex, *i.e.* $D^{*\pm} \rightarrow D\pi^{\pm}$
 - ▶ **Semileptonic:** coming from *B*-decays, *i.e.* $B \rightarrow D\mu^{\pm}X$

The measured asymmetry (\mathbf{A}_{raw}) in $\mathbf{D} \to \mathbf{h}^+\mathbf{h}^-$ decays (h = K or π) includes both physics and detector effects:

$$\begin{array}{l} \textbf{A}_{raw} = \textbf{A}_{CP} + \textbf{A}_{D} + \textbf{A}_{P} \\ \downarrow \downarrow \\ \frac{N(D^{0} \rightarrow h^{+}h^{-}) - N(\overline{D^{0}} \rightarrow h^{+}h^{-})}{N(D^{0} \rightarrow h^{+}h^{-}) + N(\overline{D^{0}} \rightarrow h^{+}h^{-})} \end{array}$$

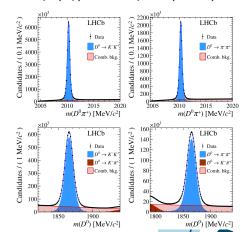
Asymmetry of our interest

Detection asymmetry from π (prompt) or μ (semileptonic)

Production asymmetry of D^* (prompt) or B (semileptonic)

To eliminate A_D and A_P :

$$\Delta A_{CP} = A_{K^+K^-} - A_{\pi^+\pi^-} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$$



ΔA_{CP} measurement: fits and yields

Phys. Rev. Lett. 122, 211803

- Fit $m(D^0\pi)$ (prompt) or $m(D^0)$ (semileptomic) $\Rightarrow A_{raw}$
- Signal events from prompt decay:
 - ▶ **44 million** for $D \rightarrow K^+K^-$
 - ▶ **14 million** for $D \rightarrow \pi^+\pi^-$
- Signal events from semileptonic decay:
 - ▶ 9 million for $D \rightarrow K^+K^-$
 - ▶ 3 million for $D \to \pi^+\pi^-$

Prompt (top) and semileptonic (bottom):

ΔA_{CP} measurement: systematic uncertainties

Phys. Rev. Lett. 122, 211803

	$(\times 10^{-4})$		
Source	π -tagged	μ -tagged	
Fit model	0.6	2	
Mistag	_	4	
Weighting	0.2	1	
Secondary decays	0.3	_	
Peaking background	0.5	_	
B fractions	_	1	
B reco. efficiency	_	2	
Total	0.9	5	

- Dominant systematic uncertainty:
 - Prompt:
 - fit model: evaluated by pseudo-experiments
 - ▶ peaking $(m(D^0\pi))$ background $(D^0 \to K^-\pi^+\pi^0, D^0 \to \pi^-\ell^+\nu_\ell)$: evaluated via measuring yields and background asymmetries in $m(D^0)$ distributions
 - Semileptonic:
 - ▶ **Mistag** evaluated from $B \to D^0(K^-\pi^+)\mu X$ sample

ΔA_{CP} measurement: results

Phys. Rev. Lett. 122, 211803

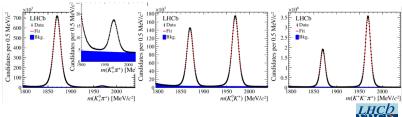
► From Run II:

$$\begin{split} \Delta A_{\textit{CP}}^{\pi-\textit{tag}} &= \left(-18.2 \pm 3.2 \pm 0.9\right) \times 10^{-4}, \\ \Delta A_{\textit{CP}}^{\mu-\textit{tag}} &= \left(-9 \pm 8 \pm 5\right) \times 10^{-4} \end{split}$$

Combine with LHCb Run I data:

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

Observation of CP violation with 5.3σ significance!



Search for CPV in $D^+ \to K_S^0 K^+$, $D_S^+ \to K_S^0 \pi^+$, and $D^+ \to \phi \pi^+$ decays

- ▶ CPV can arise from interference between $c \rightarrow ddu$ and $c \rightarrow s\bar{s}u$
- ▶ Run II data set of 3.8 fb⁻¹

$$\begin{split} A_{CP}(D_s^+ \to K_S^0 \pi^+) &\approx A(D_s^+ \to K_S^0 \pi^+) - A(D_s^+ \to \phi \pi^+) \\ A_{CP}(D^+ \to K_S^0 K^+) &\approx A(D^+ \to K_S^0 K^+) - A(D^+ \to K_S^0 \pi^+) \\ &- A(D_s^+ \to K_S^0 K^+) + A(D_s^+ \to \phi \pi^+) \\ A_{CP}(D^+ \to \phi \pi^+) &\approx A(D^+ \to \phi \pi^+) - A(D^+ \to K_S^0 \pi^+) \end{split}$$

- Simultaneous fit is performed to extract raw asymmetries
- ▶ Signal yield varies from 0.6 to 53 million

Search for CPV in $D^+ \to K_S^0 K^+$, $D_S^+ \to K_S^0 \pi^+$, and $D^+ \to \phi \pi^+$ decays

Phys. Rev. Lett. 122, 191803

Systematic uncertainties:

$$(\times 10^{-3})$$

Source	$\mathcal{A}_{CP}(D_s^+ \to K_S^0 \pi^+)$	$\mathcal{A}_{CP}(D^+ \to K^0_S K^+)$	$\mathcal{A}_{CP}(D^+ \to \phi \pi^+)$
Fit model	0.39	0.44	0.24
Secondary decays	0.30	0.12	0.03
Kinematic differences	0.09	0.09	0.04
Neutral kaon asymmetry	0.05	0.05	0.04
Charged kaon asymmetry	0.08	0.09	0.15
Total	0.51	0.48	0.29

- Dominant source is the fit model
- Secondary charm contribution (from semileptonic B decays) is also non-negligible

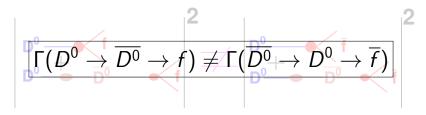
Search for CPV in $D^+ \to K_S^0 K^+$, $D_S^+ \to K_S^0 \pi^+$, and $D^+ \to \phi \pi^+$ decays

Results:

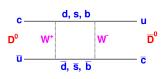
Phys. Rev. Lett. 122, 191803

$$\begin{array}{ll} {\sf A_{CP}}({\sf D_s^+} \to {\sf K_S^0}\pi^+) &= (1.3 \pm 1.9 \pm 0.5) \times 10^{-3} \\ {\sf A_{CP}}({\sf D^+} \to {\sf K_S^0}{\sf K^+}) &= (-0.09 \pm 0.65 \pm 0.48) \times 10^{-3} \\ {\sf A_{CP}}({\sf D^+} \to \phi\pi^+) &= (0.05 \pm 0.42 \pm 0.29) \times 10^{-3} \end{array}$$

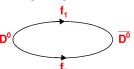
Best measurements of A_{CP} on these modes!


Results with Run I + Run II:

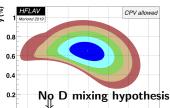
$$\begin{array}{ll} {\sf A}_{\sf CP}({\sf D}_{\sf s}^+\to{\sf K}_{\sf S}^0\pi^+)&=(1.6\pm1.7\pm0.5)\times10^{-3}\\ {\sf A}_{\sf CP}({\sf D}^+\to{\sf K}_{\sf S}^0{\sf K}^+)&=(-0.04\pm0.61\pm0.45)\times10^{-3}\\ {\sf A}_{\sf CP}({\sf D}^+\to\phi\pi^+)&=(0.03\pm0.40\pm0.29)\times10^{-3} \end{array}$$



Mixing and indirect CPV



$D^{0} - \overline{D^{0}}$ mixing


Short range

Long range

Formalism

0.2 0.4

Mass eigenstates:

$$\left| \mathsf{D}_{1,2}
ight
angle = \mathsf{p} \left| \mathsf{D}^0
ight
angle \pm \mathsf{q} \left| \overline{\mathsf{D}^0}
ight
angle$$

 $m_{1,2}$, $\Gamma_{1,2}$ are masses and widths of $D_{1.2}$

Mixing parameters:

$$x\equiv\frac{m_1-m_2}{\Gamma};y\equiv\frac{\Gamma_1-\Gamma_2}{2\Gamma}$$

$$x = (0.36^{+0.21}_{-0.16})\%$$

-0.2

$$y = (0.67^{+0.26}_{-0.17})\%$$

2σ

Search for TD CPV in $D^0 o h^+h^-$ decays $(h = K, \pi)$

LHCb-CONF-2019-001

 Standard model prediction is smaller than current experimental precision

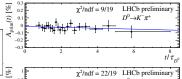
- Perform a linear fit to the values of A_{CP} calculated from bins of D⁰ decay time
 - ► The slope parameter is A_Γ
 - $A_{\Gamma} = -a_{CP}^{indir}$
- ▶ Data sample $\approx 2 \text{ fb}^{-1}$ from Run II

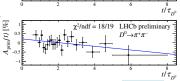
Search for TD CPV in $D^0 \rightarrow h^+h^-$ decays $(h = K, \pi)$

- \blacktriangleright A_{Γ} is from 21 bins of D decay time LHCb-CONF-2019-001
- ▶ Dataset: 17 million for $D^0 \to K^+K^-$ and 5 million for $D^0 \to \pi^+\pi^-$
- Validated measurement with

$$D^0 o K^-\pi^+$$

Results:


$$\begin{array}{l} A_{\Gamma}(D^0 \to K^-\pi^+) = (0.7 \pm 1.1) \times 10^{-4} \\ A_{\Gamma}(D^0 \to K^+K^-) = (1.3 \pm 3.5 \pm 0.7) \times 10^{-4} \\ A_{\Gamma}(D^0 \to \pi^+\pi^-) = (11.3 \pm 6.9 \pm 0.8) \times 10^{-4} \end{array}$$


 A_{Γ} does not depend on D decay channel and two values can be combined

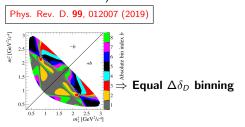
$$A_{\Gamma}(D^0 \to h^+h^-) = (3.4 \pm 3.1 \pm 0.6) \times 10^{-4}$$

 $(h = K, \pi)$

Combining with Run I data:

$$A_{\Gamma}(D^0 \to h^+h^-) = (0.9 \pm 2.1 \pm 0.7) \times 10^{-4}$$

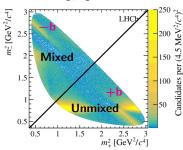
 $(h = K, \pi)$



Ar is consistent with SM!

Measurement of the mass difference between neutral charm meson eigenstates

- ▶ Used $D^0 o K_S^0 \pi^+ \pi^-$ decays \Rightarrow rich resonance structures
- ▶ Good sensitivity due to interference between D^0 and $\overline{D^0}$ decays
- ► Challenges in LHCb:
 - ▶ Decay time acceptance & distortions in Dalitz ⇒ difficult to model
 - ▶ K^o_S reconstruction ⇒ different Dalitz-acceptance & resolution at different regions of its decay
 - ▶ Separation of semileptonic D (≈ 1 million) from prompt (≈ 1.3 million)


JΙ

- Model-independent Bin-flip approach
- ► Simpler than Dalitz analysis
- ► To avoid efficiency modeling and dynamics of D⁰ decay

Model-independent Bin-flip method

 \blacktriangleright Used c_b , s_b from CLEO-c

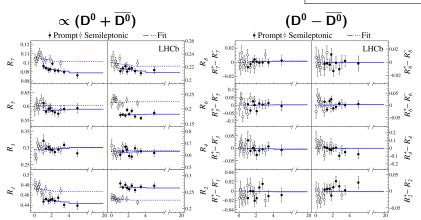
Phys. Rev. Lett. 122, 231802

- ▶ Bin Dalitz into $\pm b$ about $m_+^2 = m_-^2$
- D decay time into bins j
- ► Measure ratio of signal in -b and +b in bin j

$$R_{bj}^{\pm} = \frac{r_b \left[1 + \frac{1}{4} t_j^2 Re(z_{CP}^2 - \Delta z^2) \right] + \frac{1}{4} t_j^2 |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} t_j Re\left[\mathbf{X_b^*}(z_{CP} \pm \Delta z) \right]}{\left[1 + \frac{1}{4} t_j^2 Re(z_{CP}^2 - \Delta z^2) \right] + r_b \frac{1}{4} t_j^2 |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} t_j Re\left[\mathbf{X_b^*}(z_{CP} \pm \Delta z) \right]},$$

where $z_{CP} \pm \Delta z = -(\frac{q}{p})^{\pm}(y+ix)$ and r_b is ratio without mixing $\mathbf{X}_b = \mathbf{c}_b - \mathbf{i}\mathbf{s}_b$

 R^{\pm} changes with time \Rightarrow Mixing $R^{+} \neq R^{-} \Rightarrow$ Indirect CPV



IFJ PAN, Krakow

Model-independent Bin-flip method: results (Run I data)

Phys. Rev. Lett. 122, 231802

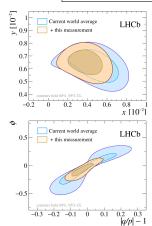
Difference in prompt $\overset{t/\tau}{\&}$ semileptonic data \Rightarrow efficiency variation across Dalitz

The slope indicates the *D*-mixing

Results and world average

$$\begin{array}{l} y_{CP} = (0.74 \pm 0.36 \pm 0.11)\% \\ \Delta y = (-0.06 \pm 0.16 \pm 0.03)\% \\ x_{CP} = (0.27 \pm 0.16 \pm 0.04)\% \\ \Delta x = (-0.053 \pm 0.070 \pm 0.022)\% \end{array}$$

From Belle:


$$x = (0.56 \pm 0.19^{+0.04+0.06}_{-0.08-0.08})\%$$

 $y = (0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.07})\%$

For no CPV hypothesis:

$$x_{CP} = x$$
, $y_{CP} = y$, $\Delta x = \Delta y = 0$

- Best precision on x from a single measurement!
- Statistically dominated
- Dominant systematics \rightarrow semileptonic contamination

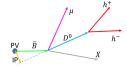
Phys. Rev. Lett. 122, 231802

x > 0 at $3\sigma!$

Summary

- Plenty of charm data have been collected at LHCb from Run I and Run II
- CP violation in charm decays has been observed for the first time
- Bin-flip method allows us to perform the most precise measurement of x
- First evidence of x > 0
- Many interesting charm analyses are going on with the full LHCb dataset
- ► Stay tuned...

Backup slides


Determining the flavor of D meson

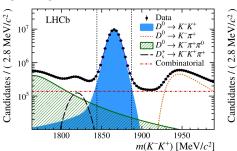
Two ways to distinguish D^0 and $\overline{D^0}$:

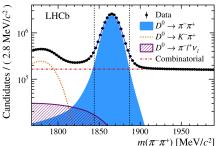
- ► From prompt: use "slow" pion charge
- ▶ From secondary: use the charge of muon

Prompt tag – IP ~ 0

Semileptonic tag – IP > 0

ΔA_{CP} future prospects


Sample (\mathcal{L})	Tag	Yield	Yield	$\sigma(\Delta A_{CP})$	$\sigma(A_{CP}(hh))$
		$D^0 \rightarrow K^-K^+$	$D^0 ightarrow \pi^- \pi^+$	[%]	[%]
Run 1–2 (9 fb ⁻¹)	Prompt	52M	17M	0.03	0.07
Run 1–3 (23 fb ⁻¹)	Prompt	280M	94M	0.013	0.03
Run $1-4 (50 \text{ fb}^{-1})$	Prompt	1G	305M	0.01	0.03
Run 1–5 (300 fb ⁻¹)	Prompt	4.9G	1.6G	0.003	0.007


• Huge improvement in precision

ΔA_{CP} peaking backgrounds

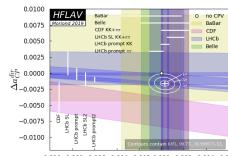
• From $m(K^+K^-)$ and $m(\pi^+\pi^-)$ fits and then extrapolated into the signal region

4 / 10

A_{Γ} measurement-systematic uncertainties

 $(\times 10^{-4})$

Source	$A_{\Gamma}(D^0 \to K^+K^-)$	$A_{\Gamma}(D^0 \to \pi^+\pi^-)$
Secondary decays	0.4	0.4
Δm background	0.3	0.5
$m(h^+h^-)$ background	0.3	0.2
Kinematic weighting	0.3	0.3
Sum in quadrature	0.7	0.8


New world average

$$oldsymbol{\Delta} \mathsf{A}_\mathsf{CP} \simeq oldsymbol{\Delta} \mathsf{a}_\mathsf{CP}^\mathsf{dir} \left(1 + rac{\langle ar{\mathbf{t}}
angle}{ au_\mathsf{D^0}} \mathsf{y}_\mathsf{CP}
ight) + rac{oldsymbol{\Delta} \left\langle \mathbf{t}
ight
angle}{ au_\mathsf{D^0}} \mathsf{a}_\mathsf{CP}^\mathsf{ind} \ \Delta A_\mathit{CP} pprox a_\mathit{CP}^\mathit{dir} - rac{oldsymbol{\Delta} \left\langle t
ight
angle}{ au_\mathit{D^0}} A_\mathsf{\Gamma}$$

$$\begin{array}{c} \blacktriangleright \ \langle \overline{t} \rangle \equiv \frac{\left(\langle t \rangle_{KK} + \langle t \rangle_{\pi\pi} \right)}{2} \\ \\ \Delta \ \langle t \rangle \equiv \langle t \rangle_{KK} - \langle t \rangle_{\pi\pi} \end{array}$$

- $\blacktriangleright \ \frac{\langle \bar{t} \rangle}{\tau_{D^0}} \text{, } \frac{\Delta \langle t \rangle}{\tau_{D^0}} \text{ are from full dataset}$
- LHCb averages for

$$y_{CP} = (5.7 \pm 1.5) \times 10^{-3}$$
; $a_{CP}^{ind} = (-2.8 \pm 2.8) \times 10^{-4}$

-0.010-0.008-0.006-0.004-0.002 0.000 0.002 0.004 a_{CP}^{ind}

$$\Delta a_{CP}^{dir} = (-15.6 \pm 2.9) imes 10^{-4}$$

confirms that ΔA_{CP} is mainly sensitive to direct CPV

Bin-flip method

Advantages:

- Does not require to model Dalitz
- ▶ Time and Dalitz acceptance modeling not required

Limitations:

- Cleo-c input can be limiting factor for Run II
- ▶ *CP*-eigenstates cancel in ratios \rightarrow less sensitive to y, Δy
- ▶ Treats time & Dalitz are uncorrelated \rightarrow further reduces the sensitivity to $y, \Delta y$

Comparison with Belle

▶ Belle dataset: 1.2 million signal events Phys. Rev. D. 89, 091103 (2014)

LHCb dataset: 2.3 million signal events

Belle:

$$x = (0.56 \pm 0.19^{+0.04+0.06}_{-0.08-0.08})\%$$

$$y = (0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.07})\%$$

- Statistically dominated
- Significant modeling uncertainty

I HCh Run I:

$$x = (0.27 \pm 0.16 \pm 0.04)\%$$

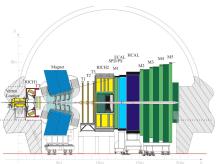
$$y = (0.74 \pm 0.36 \pm 0.11)\%$$

- Statistically dominated
- Dominant systematic uncertainties are Dalitz model and acceptance

Bin-flip method-systematic uncertainties

 $(\times 10^{-3})$

	()				
Source	x_{CP}	y_{CP}	Δx	Δy	
Secondary charm decays	0.24(0.44)(0.00)	0.36(0.65)(0.00)	< 0.01	< 0.01	
Unrelated $D^0\mu^-$ combinations	0.34(0.00)(0.94)	0.31(0.00)(0.60)	< 0.01	< 0.01	
Reconstruction and selection biases	0.08(0.24)(0.08)	0.94(1.37)(0.21)	0.22(0.24)(0.28)	0.25(0.29)(0.22)	
Mass-fit model	0.04(0.02)(0.10)	0.03(0.08)(0.15)	< 0.01	0.03(0.04)(<0.01)	
VELO length scale	< 0.01	< 0.01	< 0.01	< 0.01	
Input D^0 lifetime	< 0.01	< 0.01	< 0.01	< 0.01	
Total systematic	0.43(0.50)(0.95)	1.05(1.52)(0.65)	0.22(0.24)(0.28)	0.25(0.29)(0.22)	
CLEO inputs	0.70(0.65)(0.87)	1.22(1.54)(1.35)	0.19(0.25)(0.28)	0.26(0.36)(0.65)	
Statistical (w/o CLEO inputs)	1.46(1.76)(2.64)	3.35(4.02)(6.12)	0.68(0.74)(1.67)	1.58(1.76)(3.93)	
Statistical	1.62(1.87)(2.78)	3.57(4.30)(6.27)	0.70(0.78)(1.69)	1.60(1.80)(3.98)	



9 / 10

The LHCb detector

J. Instrum. 3 (2008) S08005; Nucl. Phys. B 871 (2013) 1-20; J. High Energ. Phys. 74 (2017)

Single-arm spectrometer covering pseudo-rapidity $\eta \in (2,5)$

- VEetex LOcator: 20 μm IP resolution
- Tracking systems: $\frac{\Delta p}{p} = 0.4\text{--}0.6\%$ © 5-100 GeV/c
- RICH: excellent particle identification; >95% efficiency & 5% mis-identification

Due to large cross-section, unprecedented amount of charm decays are collected during Run I (\sqrt{s} = 7 TeV between Year 2011–2012) and Run II (\sqrt{s} = 13 TeV between Year 2015–2018)