CP violation in multi-body charmless b-hadron decays at LHCb

Adam Morris, on behalf of the LHCb collaboration

Aix Marseille Univ, CNRS/IN2P3, CPPM

European Physical Society Conference on High Energy Physics Ghent, 11th July 2019

Adam Morris (CPPM)

Multi-body charmless CPV

EPS-HEP 2019, Ghent

Charmless *b*-hadron decays

- Tree $b \rightarrow u$
 - Cabibbo suppression (V_{ub})

- Penguin $b \rightarrow d$ or $b \rightarrow s$
 - Loop-level suppression
 - Sensitive to new particles in the loop
- Similar magnitude of tree & penguin contributions
 - Relative weak phase: interference \rightarrow *CP* violation
- Rich resonant structure in multi-body decays
 - Strong-phase differences in interference between resonances \rightarrow enhanced CP violation

Charmless three-body B decays

- Rich resonant structure warrants amplitude analysis to measure *CP* violation in different regions of the phase space
- $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ covered in Jeremy Dalseno's talk
 - LHCb-PAPER-2019-017, LHCb-PAPER-2019-018

This talk:

- Amplitude analysis of $B^0_s
 ightarrow K^0_S K^\pm \pi^\mp$
 - JHEP 06 (2019) 114
- Amplitude analysis of $B^\pm\!
 ightarrow\pi^\pm K^+K^-$
 - arXiv:1905.09244

Charmless four-body *b*-baryon decays

- CP violation in baryons not yet observed
- Potential for large CP-violating effects in multi-body charmless b-baryon decays

This talk:

- Measurements of $\Delta \mathcal{A}^{CP}$ in charmless four-body Λ_b^0 and Ξ_b decays
 - arXiv:1903.06792

 $B_s^0
ightarrow K_S^0 K^{\pm} \pi^{\mp}$

Background

- First observed by LHCb in 1 fb^{-1} from 2011 (JHEP 10 (2013) 143)
- Branching fraction improved in $3 \, \text{fb}^{-1}$ from 2011+12 (JHEP 11 (2017) 027)
- Specific intermediate states studied
 - $B_s^0 \to K^{*\pm}K^{\mp}$ (New J. Phys. 16 (2014) 123001) $B_s^0 \to K^{*0}K_s^0$ (JHEP 01 (2016) 012)
- Potential for future time-dependent CP violation measurement with larger datasets

 $B_s^0 \to K_S^0 K^{\pm} \pi^{\mp}$ JHEP 06 (2019) 114

Introduction

- First amplitude analysis of $B^0_s o K^0_S K^\pm \pi^\mp$
 - Untagged and time-integrated
 - Simultaneous amplitude fit of two final states
 - Novel approach

• 431
$$\overleftrightarrow{B_s^0} \to K_S^0 K^+ \pi^- + 489 \, \overleftrightarrow{B_s^0} \to K_S^0 K^- \pi^+$$

- Run 1 dataset: 3 fb^{-1} from 2011+12
- Published as JHEP 06 (2019) 114

Amplitude model

- Both B_s^0 and \overline{B}_s^0 can decay to each final state, although not necessarily with the same amplitude $A_f \neq \overline{A}_f$
- Untagged analysis means B_s^0 and \overline{B}_s^0 cannot be distinguished
- Fit for effective amplitude that is a combination of A_f and \overline{A}_f
- $K^+K_S^0$ resonances e.g. $a_2(1320)^+$ considered but not seen in fit
- $K\pi$ P-wave and D-wave modelled with Breit–Wigners
- $K\pi$ S-wave modelled with the LASS lineshape
 - Combines $K_0^*(1430)$ and non-resonant $K\pi$
 - Possible to disentangle later when calculating $\mathcal{B}(B^0_s o K^*_0(1430)K)$

 $K^0_S K^+ \pi^-$

Fit results

	$K^0_S K^-$	$^{+}\pi^{-}$	$\kappa^0_{s}\kappa^-\pi^+$				
F	Resonance	Frac. (%)	Resonance	Frac. (%)			
ŀ	<*(892) [_]	15.6 ± 1.5	K*(892) ⁺	13.4 ± 2.0			
ŀ	$\zeta_0^*(1430)^-$	30.2 ± 2.6	$K_0^*(1430)^+$	28.5 ± 3.6			
ŀ	$(\sqrt[8]{2})^{*}(1430)^{-}$	2.9 ± 1.3	$K_{2}^{*}(1430)^{+}$	5.8 ± 1.9			
ŀ	<* (892) ⁰	13.2 ± 2.4	$\overline{K^{*}}(892)^{0}$	19.2 ± 2.3			
ŀ	$\zeta_0^*(1430)^0$	33.9 ± 2.9	$\overline{K}_{0}^{*}(1430)^{0}$	27.0 ± 4.1			
ŀ	$\zeta_{2}^{*}(1430)^{0}$	5.9 ± 4.0	$\overline{K}_{2}^{*}(1430)^{0}$	7.7 ± 2.8			
NB:	uncertainties a	re statistical only	-				

• Fit fractions for each resonance and its conjugate are consistent, hence no significant *CP* violation observed

Sources of systematics:

- Mismodelling in mass fit
- Efficiency and background models
- Fit bias
- Fixed parameters
- Amplitude model

Branching fractions

Flavour-averaged fit fractions converted to branching fractions for the quasi-two-body modes First observations of $B_s^0 \rightarrow K_0^*(1430)K$ modes

$$\begin{split} \mathcal{B}(B^0_s \to K^*(892)^{\pm} K^{\mp}) &= (18.6 \pm 1.2 \pm 0.8 \pm 4.0 \pm 2.0) \times 10^{-6} \\ \mathcal{B}(B^0_s \to K^*_0(1430)^{\pm} K^{\mp}) &= (31.3 \pm 2.3 \pm 0.7 \pm 25.1 \pm 3.3) \times 10^{-6} \\ \mathcal{B}(B^0_s \to K^*_2(1430)^{\pm} K^{\mp}) &= (10.3 \pm 2.5 \pm 1.1 \pm 16.3 \pm 1.1) \times 10^{-6} \\ \mathcal{B}(B^0_s \to \widetilde{K}^*(892)^0 \widetilde{K}^{0}) &= (19.8 \pm 2.8 \pm 1.2 \pm 4.4 \pm 2.1) \times 10^{-6} \\ \mathcal{B}(B^0_s \to \widetilde{K}^*_0(1430)^0 \widetilde{K}^{0}) &= (33.0 \pm 2.5 \pm 0.9 \pm 9.1 \pm 3.5) \times 10^{-6} \\ \mathcal{B}(B^0_s \to \widetilde{K}^*_2(1430)^0 \widetilde{K}^{0}) &= (16.8 \pm 4.5 \pm 1.7 \pm 21.2 \pm 1.8) \times 10^{-6} \end{split}$$

Uncertainties: \pm stat \pm syst \pm model \pm norm

"norm" refers to uncertainty on ${\cal B}(B^0_s o K^0 K^\pm \pi^\mp)$

Branching fractions of non-resonant modes:

$$\begin{split} \mathcal{B}(B^0_s \to (\overleftarrow{K}^{!0}\pi^{\pm})_{\rm NR}K^{\mp}) &= (11.4 \pm 0.8 \pm 0.2 \pm 9.2 \pm 1.2 \pm 0.5) \times 10^{-6} \\ \mathcal{B}(B^0_s \to (K^{\mp}\pi^{\pm})_{\rm NR}\overleftarrow{K}^{!0}) &= (12.1 \pm 0.9 \pm 0.3 \pm 3.3 \pm 1.3 \pm 0.5) \times 10^{-6} \end{split}$$

Uncertainties: \pm stat \pm syst \pm model \pm norm \pm eff. range

Fifth uncertainty related to proportion of the $(K\pi)_0^*$ component due to the effective range part of the LASS lineshape.

$B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$

Background

Previously studied by LHCb (Phys. Rev. D 90 (2014) 112004)

- Binned model-independent analysis
- Total $\mathcal{A}^{CP} = -0.123 \pm 0.017 \pm 0.012 \pm 0.007$
- Regions of phase space with much larger \mathcal{A}^{CP}

Introduction

- First amplitude analysis of $B^\pm\!
 ightarrow\pi^\pm K^+K^-$
 - $\pi^{\pm} K^{\mp}$ resonances: $K^{*}(892)^{0}$, $K_{0}^{*}(1430)^{0}$
 - Single-pole form factor to describe non-resonant $\pi^{\pm}K^{\mp}$
 - K^+K^- resonances: $\phi(1020), f_2(1270), \rho(1450)^0$
 - Dedicated $\pi\pi \leftrightarrow KK$ rescattering amplitude
- Run 1 dataset: 3 fb^{-1} from 2011+12
- Candidates in signal region: 2052 B^+ , 1566 B^-
- Submitted to PRL

Non-resonant single-pole form factor

Proposed by Alvarenga Nogueira et al. (Phys. Rev. D 92 (2015) 054010)

$$\mathcal{A}_{\mathsf{source}} = \left(1 + rac{s}{\Lambda^2}
ight)^{-1}$$

•
$$s=m_{\pi^\pm K^\mp}^2$$

• $\Lambda=1\,{
m GeV}/c^2$ sets the scale for the energy dependence

$\pi\pi \leftrightarrow \textit{KK}$ rescattering amplitude

Based on Pelaez and Yndurain (Phys. Rev. D 71 (2005) 074016)

$$\mathcal{A}_{ ext{rescattering}} = \left(1 + rac{s}{\Lambda^2}
ight)^{-1} \sqrt{1 -
u^2} e^{2i\delta}$$

Inelasticity, ν :

$$u = 1 - \left(\epsilon_1 \frac{k_2}{\sqrt{s}} + \epsilon_2 \frac{k_2^2}{s}\right) \frac{M'^2 - s}{s}$$

Phase shift δ :

$$\cot \delta = C_0 rac{(s - M_s^2)(M_f^2 - s)}{M_f^2 \sqrt{s}} rac{|k_2|}{k_2^2}$$

• $s = m_{K^+K^-}^2$ • $k_2 = \frac{1}{2}\sqrt{2 - 4m_K}$ • $m_K = 0.495 \,\text{GeV}/c^2$

•
$$M' = 1.5 \,\mathrm{GeV}/c^2$$

•
$$M_s = 0.92 \, {
m GeV}/c^2$$

•
$$M_f = 1.32 \, {
m GeV}/c^2$$

•
$$\epsilon_1 = 2.4$$

•
$$C_0 = 1.3$$

$B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$ arXiv:1905.09244

The $\pi^\pm {\sf K}^\mp$ spectrum

• Single-pole non-resonant is dominant contribution (\sim 32%)

• $\rho(1450)^0 - f_2(1270)$ destructive interference at high $m_{\pi^{\pm}K^{\mp}}^2$

Adam Morris (CPPM)

$B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$ arXiv:1905.09244

The K^+K^- spectrum

 B^+

 B^{-}

• $ho(1450)^0 \sim 30\%$ contribution

- Unexpectedly large for K^+K^-
- Further analysis with more data needed
- $\pi\pi\leftrightarrow$ *KK* \sim 16% contribution
 - Large CP asymmetry

Results

Sources of systematics:

- Mismodelling in mass fit
- Efficiency and background models
- Fit bias
- Fixed parameters

• $\pi\pi \leftrightarrow KK$ rescattering: largest ever *CP* asymmetry for a single amplitude to date

- No significant CP asymmetry observed in the other components
- $\phi(1020)$ contribution not significant

Four-body Λ_b^0 and Ξ_b^0 decays

Previous LHCb results on charmless four-body *b*-baryon decays:

- Branching fractions (JHEP 02 (2018) 098)
- Triple-product asymmetries: (Nature Phys. 13 (2017) 391-396, JHEP 08 (2018) 039)
- 3.3 σ evidence for *CP* violation in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ from triple-products

• \mathcal{A}^{CP} using Λ_b^0/Ξ_b^0 and $\overline{\Lambda}_b^0/\overline{\Xi}_b^0$ yields obtained from fitting m(phh'h'')

$$\mathcal{A}^{CP} \equiv \frac{\Gamma(X_b^0 \to f) - \Gamma(\overline{X}_b^0 \to \overline{f})}{\Gamma(X_b^0 \to f) + \Gamma(\overline{X}_b^0 \to \overline{f})}$$

- Complementary to triple-products
- Run 1 dataset: 3 fb^{-1} from 2011+12
- Submitted to EPJC

- Six decay modes studied:

 - $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^ \Lambda_b^0 \rightarrow pK^-\pi^+\pi^ \Lambda_b^0 \rightarrow pK^-K^+\pi^ \Lambda_b^0 \rightarrow pK^-K^+K^-$

•
$$\Xi_b^0 \rightarrow pK^-\pi^+\pi^-$$

•
$$\Xi_b^0 \rightarrow p K^- \pi^+ K^-$$

- For the three most abundant decays, also study specific regions of phase space
 - Low two-body mass
 - Specific intermediate resonances
- $\Lambda_{h}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$ and $\Xi_{h}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}$ control channels to cancel production and detection asymmetries

•
$$\Delta \mathcal{A}^{CP} = \mathcal{A}^{CP}_{charmless} - \mathcal{A}^{CP}_{charm}$$

Phase space regions

Mass fits

- Simultaneous maximum likelihood fit to *b*-hadron candidates under each phh'h'' hypothesis Data split by:
 - Proton charge
 - Year of data-taking
 - Hardware trigger condition
- Fit model has components for:
 - Signal
 - Cross-feed $(\pi K \text{ mis-ID})$
 - 4-body B-meson decays $(p \pi \text{ and } p K \text{ mis-ID})$
 - 5-body b-hadron decays
 - Combinatorial background

Sample fit projections

інср

- Total of 18 ΔA^{CP} measurements
- No indication of significant CPV
- Statistical uncertainty dominates
- $\sim 5 \times$ larger yields in Run 2 data

Summary and conclusions

Summary

- $B^0_s
 ightarrow K^0_S K^\pm \pi^\mp$
 - No evidence of CP violation
 - Updated quasi-two-body branching fractions
 - First observation of $B_s^0
 ightarrow K_0^*(1430) K$ modes

 $B^\pm\!\to\pi^\pm K^+K^-$

- $\mathcal{A}^{CP} = (-66.4 \pm 4.2) \,\%$ in $\pi\pi \leftrightarrow \textit{KK}$ rescattering term
- Largest CP asymmetry in a single amplitude

Four-body *b*-baryon decays

- 18 ΔA^{CP} measurements
- No evidence of CP violation

- Multi-body charmless b-hadron decays are an important area for studying CP violation
- LHCb Run 2 data and upgrade will provide improved results

Backup slides

Track types at LHCb

- Long tracks pass through all tracking stations
- Downstream tracks pass through the TT and T
 - A and K_S^0 can decay outside VELO

Adam Morris (CPPM)

Multi-body charmless CPV

Run 1 performance paper: LHCb-DP-2014-002

 $B_s^0
ightarrow K_S^0 K^{\pm} \pi^{\mp}$

- Simultaneous fit to $m(K_S^0 K^{\pm} \pi^{\mp})$ in 24 data categories:
 - 3 data-taking periods (change in trigger efficiency during 2012)
 - 4 final states (including $\pi \leftrightarrow K$ mis-ID)
 - 2 K_S^0 reconstruction categories: decay inside ("long") or outside ("downstream") VELO
- Signal and cross-feed: sum of two Crystal Ball functions
- Combinatorial background: exponential function

B_s^0 mass fit

Final	K_S^0	Sample	B_s^0 signal		Combinato	rial	Cross-feed		
state	category		Full range 2.5σ		Full range	2.5σ	Full range	2.5σ	
		2011	73.6 ± 10.6	72.1	108.3 ± 15.1	22.1	8.9 ± 2.8	1.7	
	downstream	2012a	48.2 ± 8.6	45.7	70.1 ± 12.1	14.3	7.3 ± 3.8	1.1	
$\kappa^0 \kappa^+ \pi^-$		2012b	135.3 ± 13.6	130.0	87.4 ± 13.8	17.9	17.0 ± 5.6	3.1	
κ _s κ ⁺ π		2011	$\bar{76.2 \pm 9.8}$	74.6	$\bar{44.1 \pm 9.8}$	8.4	$\overline{8.2\pm1.7}$	1.8	
	long	2012a	$38.5\pm~7.7$	36.8	58.8 ± 11.2	11.2	7.8 ± 1.8	0.9	
		2012b	73.5 ± 10.6	71.9	71.7 ± 13.1	13.6	15.9 ± 2.5	1.7	
	total			431.1		87.5		10.3	
		2011	72.8 ± 10.3	71.4	78.9 ± 12.7	16.1	8.2 ± 2.4	1.3	
	downstream	2012a	$68.8\pm~9.6$	65.2	46.2 ± 9.9	9.5	7.0 ± 3.4	1.2	
$\kappa^0 \kappa^- \pi^+$		2012b	165.1 ± 15.2	158.6	104.1 ± 15.0	21.3	17.3 ± 5.8	2.9	
n _š n π'		2011	$\bar{77.3}\pm \bar{9.8}$	75.7	$\bar{39.0 \pm 10.2}$	7.4	9.6 ± 1.7	1.4	
	long	2012a	40.3 ± 8.1	38.5	58.9 ± 11.9	11.2	8.6 ± 1.8	0.7	
		2012b	81.7 ± 10.4	80.0	50.1 ± 12.3	9.5	15.0 ± 2.5	1.4	
	total			489.4		75.0		8.9	

Adam Morris (CPPM)

Systematics

				Fit fraction (%) uncertainties							
Resonance	Yields	Bkg.	Eff.	Fit bias	Add. res.	Fixed par.	Alt. model	Method	Total		
$K^{*}(892)^{-}$	0.2	0.2	0.5	0.2	-	0.7	5.4	3.1	6.3		
$K_0^*(1430)^-$	0.1	0.2	0.6	0.3	0.1	2.1	22.0	2.9	22.3		
$K_2^*(1430)^-$	0.1	0.1	0.3	0.6	0.1	1.8	2.2	0.2	2.9		
$K^{*}(892)^{0}$	0.2	0.2	0.4	0.9	-	0.3	7.0	2.0	7.4		
$K_0^*(1430)^0$	0.2	0.3	0.9	0.4	0.1	4.4	3.3	1.3	5.7		
$K_2^*(1430)^0$	0.1	0.3	0.7	1.3	0.2	4.4	3.6	1.0	6.0		
$K^{*}(892)^{+}$	0.4	0.1	0.6	0.5	0.1	0.7	1.1	0.7	1.8		
$K_0^*(1430)^+$	0.5	0.4	0.7	0.8	0.2	6.4	13.0	4.5	15.2		
$K_{2}^{*}(1430)^{+}$	0.1	0.2	0.4	0.2	0.1	4.1	4.5	3.2	6.9		
$\overline{K}^{*}(892)^{0}$	0.4	0.3	0.4	0.2	0.2	0.5	3.0	7.9	8.5		
$\overline{K}_{0}^{*}(1430)^{0}$	0.4	0.4	0.6	0.8	0.7	0.9	3.9	5.4	6.8		
$\overline{K}_{2}^{*}(1430)^{0}$	0.1	0.2	0.4	0.8	0.1	1.0	5.5	2.7	6.3		

$B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$

$B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$

B-factory results on $B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$

LHCb \mathcal{A}^{CP} results (reminder):

- Total \mathcal{A}^{CP} : -0.123 ± 0.017 ± 0.012 ± 0.007 (Phys. Rev. D 90 (2014) 112004)
- $\pi\pi \leftrightarrow \mathcal{KK} \ \mathcal{A}^{CP}$: -66.4 \pm 3.8 \pm 1.9 (arXiv:1905.09244)
- Belle \mathcal{A}^{CP} results:
 - Total A^{CP}: −0.170 ± 0.073 ± 0.017 (Phys. Rev. D 96 (2017) 031101)
- Branching fractions:
 - Belle: $(5.38 \pm 0.40 \pm 0.35) \times 10^{-6}$ (Phys. Rev. D 96 (2017) 031101)
 - BaBar: (5.0 \pm 0.5 \pm 0.5) \times 10^{-6}

(Phys. Rev. Lett. 99 (2007) 221801)

Projections

Adam Morris (CPPM)

Projections

Adam Morris (CPPM)

Contribution	Fit Fraction(%)	$\mathcal{A}^{CP}(\%)$	Magnitude (B^+/B^-)	Phase[°] (B^+/B^-)
$K^{*}(892)^{0}$	$7.5\pm0.6\pm0.5$	$+12.3 \pm 8.7 \pm 4.5$	$0.94 \pm 0.04 \pm 0.02$	0 (fixed)
			$1.06 \pm 0.04 \pm 0.02$	0 (fixed)
$K_0^*(1430)^0$	$4.5\pm0.7\pm1.2$	$+10.4 \pm 14.9 \pm 8.8$	$0.74 \pm 0.09 \pm 0.09$	$-176\pm10\pm16$
			$0.82 \pm 0.09 \pm 0.10$	$136\pm11\pm21$
Single pole	$32.3\pm1.5\pm4.1$	$-10.7 \pm 5.3 \pm 3.5$	$2.19 \pm 0.13 \pm 0.17$	$-138\pm7\pm5$
			$1.97 \pm 0.12 \pm 0.20$	$166\pm6\pm5$
$ ho(1450)^{0}$	$30.7\pm1.2\pm0.9$	$-10.9 \pm ~4.4 \pm ~2.4$	$2.14 \pm 0.11 \pm 0.07$	$-175\pm10\pm15$
			$1.92 \pm 0.10 \pm 0.07$	$140\pm13\pm20$
$f_2(1270)$	$7.5\pm0.8\pm0.7$	$+26.7 \pm 10.2 \pm 4.8$	$0.86 \pm 0.09 \pm 0.07$	$-106\pm11\pm10$
			$1.13 \pm 0.08 \pm 0.05$	$-128\pm11\pm14$
Rescattering	$16.4\pm0.8\pm1.0$	$-66.4 \pm \ 3.8 \pm \ 1.9$	$1.91 \pm 0.09 \pm 0.06$	$-56\pm12\pm18$
			$0.86 \pm 0.07 \pm 0.04$	$-81\pm14\pm15$
ϕ (1020)	$0.3\pm0.1\pm0.1$	$+9.8 \pm 43.6 \pm 26.6$	$0.20 \pm 0.07 \pm 0.02$	$-52\pm23\pm32$
			$0.22 \pm 0.06 \pm 0.04$	$107\pm33\pm41$

Four-body Λ_b^0 and Ξ_b^0 decays

Triple-product asymmetries in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$

$$\begin{split} C_{\widehat{T}} &= \vec{p}_{p} \cdot (\vec{p}_{h_{1}^{-}} \times \vec{p}_{h_{2}^{+}}) \text{ for } \Lambda_{b}^{0} \\ \overline{C}_{\widehat{T}} &= \vec{p}_{\overline{p}} \cdot (\vec{p}_{h_{1}^{+}} \times \vec{p}_{h_{2}^{-}}) \text{ for } \overline{\Lambda_{b}^{0}} \end{split}$$

$$A_{\widehat{T}}(C_{\widehat{T}}) = \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)}$$
$$\overline{A}_{\widehat{T}}(\overline{C}_{\widehat{T}}) = \frac{\overline{N}(-\overline{C}_{\widehat{T}} > 0) - \overline{N}(-\overline{C}_{\widehat{T}} < 0)}{\overline{N}(-\overline{C}_{\widehat{T}} > 0) + \overline{N}(-\overline{C}_{\widehat{T}} < 0)}$$

The *P*- and *CP*-violating observables are defined as

$$\begin{aligned} \mathbf{a}_{P}^{\widehat{T}\text{-odd}} &= \frac{1}{2} \left(A_{\widehat{T}} + \overline{A}_{\widehat{T}} \right) \\ \mathbf{a}_{CP}^{\widehat{T}\text{-odd}} &= \frac{1}{2} \left(A_{\widehat{T}} - \overline{A}_{\widehat{T}} \right) \end{aligned}$$

Adam Morris (CPPM)

Multi-body charmless CPV

The difference of *CP*-asymmetries measured for the charmless modes and for the control channels results in ΔA^{CP} measurements. For each observable, the choice of the control channel is aiming at cancelling at first order production and detection asymmetries.

Charmless mode	Control channel
$\Lambda^0_b o p \pi^- \pi^+ \pi^-$	$\Lambda^0_b ightarrow (\Lambda^+_c ightarrow ho\pi^-\pi^+)\pi^-$
$\Lambda^0_b o ho {\cal K}^- \pi^+ \pi^-$	$arLambda_b^0 o (arLambda_c^+ o ho {\cal K}^- \pi^+) \pi^-$
$\Lambda^0_b o ho {\cal K}^- {\cal K}^+ \pi^-$	$\Lambda^0_b ightarrow (\Lambda^+_c ightarrow ho \pi^- \pi^+) \pi^-$
$\Lambda^0_b ightarrow ho K^- K^+ K^-$	$arLambda_b^0 o (arLambda_c^+ o ho {\cal K}^- \pi^+) \pi^-$
$arepsilon_b^0 o ho {\cal K}^- \pi^+ \pi^-$	$arepsilon_b^0 o (arepsilon_c^+ o ho {\cal K}^- \pi^+) \pi^-$
$arepsilon_b^0 o ho {\cal K}^- \pi^+ {\cal K}^-$	$arepsilon_b^0 ightarrow (arepsilon_c^+ ightarrow p {\it K}^- \pi^+) \pi^-$

Decay mode	Invariant-mass requirements (in MeV/c^2)
$\Lambda_b^0 ightarrow p \pi^- \pi^+ \pi^-$ low mass	$m(p\pi^-) < 2000$ and $m(\pi^+\pi^-) < 1640$
$arLambda_b^0 o {\it pa}_1(1260)^-$	419 $< m(\pi^+\pi^-\pi^+) < 1500$
$arLambda_b^0 o {\sf N}(1520)^0 ho^0$	$1078 < m(p\pi^-) < 1800$ and $m(\pi^+\pi^-) < 1100$
$\Lambda^0_b ightarrow \Delta(1232)^{++} \pi^- \pi^-$	$1078 < m(p\pi^+) < 1432$

Decay mode	Invariant-mass requirements (in $\mathrm{MeV}\!/c^2)$
$\Lambda_b^0 ightarrow p K^- \pi^+ \pi^-$ low mass	$m(ho K^-) < 2000$ and $m(\pi^+\pi^-) < 1640$
$arLambda_b^0 o {\sf N}(1520)^0 {\sf K}^{*0}$	$1078 < m(p\pi^-) < 1800$ and $750 < m(\pi^+ {\cal K}^-) < 1100$
$\Lambda^0_b ightarrow \Lambda(1520) ho^0$	$1460 < m(ho K^-) < 1580$ and $m(\pi^+\pi^-) < 1100$
$\Lambda^0_b ightarrow \Delta$ (1232) ⁺⁺ $K^-\pi^-$	$1078 < m(p\pi^+) < 1432$
$arLambda_b^0 o ho {\cal K}_1(1410)^-$	$1200 < m({K^-}{\pi^+}{\pi^-}) < 1600$

Decay mode	Invariant-mass requirements (in MeV/c^2)
$\Lambda^0_b o p K^- K^+ K^-$ low mass	$m(ho K^-) <$ 2000 and $m(K^+K^-) <$ 1675
$arLambda_b^{0} ightarrow arLambda(1520) \phi$	$1460 < m(ho K^-) < 1600$ and $1005 < m(K^+K^-) < 1040$
$arLambda_{b}^{0} ightarrow(ho \mathcal{K}^{-})_{ ext{high-mass}}\phi$	$m(ho K^-) > 1600$ and $1005 < m(K^+K^-) < 1040$

LHCb ГНСр

LHCb ГНСр

LHCb ГНСр

Adam Morris (CPPM)

Adam Morris (CPPM)

інср

Systematics

Tracking detection efficiency

• Quantified separately for kaons (σ_K) and protons (σ_p)

Trigger efficiency ($\sigma_{\rm L0}$)

- Difference in hardware-level (L0) trigger efficiency between oppositely-charged hadrons
- Production asymmetry (σ_{A_P})
 - Difference in decay kinematics of signal and control channels \rightarrow incomplete cancellation
 - Estimated from measurement of Λ_b^0 production asymmetry as a function of $p_{\rm T}$ and η (Phys. Lett. B 774 (2017) 139)

PID calibration (σ_{PID})

• Finite size of calibration samples

Decay mode	А	bsolute	Total (%)			
	σ_K	σ_{p}	$\sigma_{ m L0}$	$\sigma_{ m PID}$	σ_{A_P}	
$\Lambda^0_b ightarrow p \pi^- \pi^+ \pi^-$		0.20	0.06	0.42	0.28	0.54
$\Lambda^{0}_{b} ightarrow p \pi^{-} \pi^{+} \pi^{-}$ low mass		0.16	0.06	0.36	0.28	0.49
$arLambda_b^0 o {\it pa}_1(1260)^-$		0.20	0.09	0.48	0.28	0.60
$arLambda_b^0 o {\sf N}(1520)^0 ho^0$	—	0.12	0.05	0.23	0.28	0.39
$\Lambda_b^0 ightarrow \Delta$ (1232) ⁺⁺ $\pi^-\pi^-$		0.18	0.05	0.47	0.28	0.59

Decay mode	Absolute uncertainties (%)					Total (%)
	σ_K	σ_{p}	$\sigma_{ m L0}$	$\sigma_{ m PID}$	σ_{A_P}	
$\Lambda^0_b ightarrow ho K^- \pi^+ \pi^-$	0.17	0.20	0.06	0.41	0.24	0.55
$\Lambda^0_b ightarrow p K^- \pi^+ \pi^-$ low mass	0.17	0.17	0.05	0.34	0.24	0.48
$arLambda_b^0 ightarrow arLambda(1520) ho^0$	0.12	0.12	0.04	0.36	0.24	0.49
$\Lambda^0_b ightarrow \Delta$ (1232) ⁺⁺ $K^-\pi^-$	0.22	0.19	0.05	0.48	0.24	0.61
$arLambda_b^0 o {\sf N}(1520)^0 {\sf K}^{*0}$	0.16	0.14	0.04	0.32	0.24	0.45
$arLambda_b^0 o ho {\cal K}_1(1410)^-$	0.16	0.14	0.11	0.58	0.24	0.74

Decay mode	At	osolute	Total (%)			
	σ_K	σ_{p}	$\sigma_{ m L0}$	$\sigma_{ m PID}$	$\sigma_{\mathcal{A}_{\mathcal{P}}}$	
$\Lambda^0_b ightarrow p K^- K^+ \pi^-$	—	0.21	0.06	0.40	0.55	0.72
$\Lambda^0_b o p K^- K^+ K^-$	0.15	0.20	0.07	0.41	0.33	0.59
$\Lambda^0_b ightarrow p K^- K^+ K^-$ low mass	0.16	0.17	0.05	0.37	0.33	0.55
$\Lambda^{0}_{b} ightarrow \Lambda(1520)\phi$	0.11	0.10	0.05	0.30	0.33	0.34
$\Lambda^{0}_{b} ightarrow (pK^{-})_{high-mass} \phi$	0.15	0.14	0.06	0.58	0.33	0.64
$arepsilon_b^0 o ho {\cal K}^- \pi^+ \pi^-$	0.17	0.20	0.05	0.42	0.24	0.55
$arepsilon_b^0 o ho K^- \pi^+ K^-$	0.15	0.20	0.05	0.41	0.55	0.73

Results

$$\begin{split} & \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p \pi^- \pi^+ \pi^-) = (+1.1 \pm 2.5 \pm 0.6) \,\% \\ & \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p \mathcal{K}^- \pi^+ \pi^-) = (+3.2 \pm 1.1 \pm 0.6) \,\% \\ & \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p \mathcal{K}^- \mathcal{K}^+ \pi^-) = (-6.9 \pm 4.9 \pm 0.8) \,\% \\ & \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p \mathcal{K}^- \mathcal{K}^+ \mathcal{K}^-) = (+0.2 \pm 1.8 \pm 0.6) \,\% \\ & \Delta \mathcal{A}^{CP}(\Xi_b^0 \to p \mathcal{K}^- \pi^+ \pi^-) = (-17 \pm 11 \pm 1) \,\% \\ & \Delta \mathcal{A}^{CP}(\Xi_b^0 \to p \mathcal{K}^- \pi^+ \mathcal{K}^-) = (-6.8 \pm 8.0 \pm 0.8) \,\% \end{split}$$

Results

$$\begin{array}{l} \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p\pi^-\pi^+\pi^-) = (\pm 1.1 \pm 2.5 \pm 0.6) \,\% \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p\pi^-\pi^+\pi^-)_{\text{low mass}} = (\pm 3.7 \pm 4.1 \pm 0.5) \,\% \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to pa_1(1260)^-) = (-1.5 \pm 4.2 \pm 0.6) \,\% \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to N(1520)^0 \rho^0) = (\pm 2.0 \pm 4.9 \pm 0.4) \,\% \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to \Delta(1232)^{++}\pi^-\pi^-) = (\pm 0.1 \pm 3.2 \pm 0.6) \,\% \\ \end{array}$$

 ΔA

$$\begin{array}{c} \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p \mathcal{K}^- \pi^+ \pi^-) = (+3.2 \pm 1.1 \pm 0.6) \,\% \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p \mathcal{K}^- \pi^+ \pi^-)_{\text{low mass}} = (+3.5 \pm 1.5 \pm 0.5) \,\% \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to N(1520)^0 \mathcal{K}^{*0}) = (+5.5 \pm 2.5 \pm 0.5) \,\% \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to \Lambda(1520) \rho^0) = (+0.6 \pm 6.0 \pm 0.5) \,\% \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to \Delta(1232)^{++} \mathcal{K}^- \pi^-) = (+4.4 \pm 2.6 \pm 0.6) \,\% \\ \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p \mathcal{K}_1(1410)^-) = (+4.7 \pm 3.5 \pm 0.8) \,\% \end{array}$$

Results

$$\Delta \mathcal{A}^{CP}(\Lambda_{b}^{0} \to pK^{-}K^{+}K^{-}) = (+0.2 \pm 1.8 \pm 0.6)\%$$

$$\Delta \mathcal{A}^{CP}(\Lambda_{b}^{0} \to pK^{-}K^{+}K^{-})_{\text{low mass}} = (+2.7 \pm 2.3 \pm 0.6)\%$$

$$\Delta \mathcal{A}^{CP}(\Lambda_{b}^{0} \to \Lambda(1520)\phi) = (+4.3 \pm 5.6 \pm 0.4)\%$$

$$\Delta \mathcal{A}^{CP}(\Lambda_{b}^{0} \to (pK^{-})_{\text{high-mass}}\phi) = (-0.7 \pm 3.3 \pm 0.7)\%$$

$$-60 -50 -40 -30 -20 -10 0 10$$

$$\Delta \mathcal{A}^{CP}[\%]$$