Time-dependent CP violation in B decays at Belle

Yosuke Yusa Niigata University

Introduction

Time-dependent CP violation is induced by quantum interference between $B^0-\overline{B}^0$ mixing and B^0 decay to CP eigenstate (f_{CP}).

$$\mathcal{A}_{\mathcal{CP}} \ = \ \frac{\mathcal{P}(\overline{B^0}(\Delta t) \to f_{CP}) - \mathcal{P}(B^0(\Delta t) \to f_{CP})}{\mathcal{P}(\overline{B^0}(\Delta t) \to f_{CP}) + \mathcal{P}(B^0(\Delta t) \to f_{CP})} = \underline{\mathbf{S}} \, \underline{\mathbf{sin}} \Delta \mathbf{m} \Delta \mathbf{t} + \underline{\mathbf{A}} \, \underline{\mathbf{cos}} \Delta \mathbf{m} \Delta \mathbf{t}$$

$$S = \frac{-2\operatorname{Im}\lambda}{|\lambda|^{2}+1}: \text{ Time-dependent } \mathit{CPV} \text{ parameter, } A(=-C) = \frac{1-|\lambda|^{2}}{1+|\lambda|^{2}}: \text{ Direct } \mathit{CPV} \text{ parameter}$$

 Δm : $B - \overline{B}$ mass difference, Δt : $B - \overline{B}$ decay time difference

KEKB accelerator and Belle detector

Overview of time-dependent CP violation analysis

- Signal B is reconstructed and selected using kinematic variables (mass, energy)
- Continuum background is rejected using event shape variables from all observables.

Tag side

Remaining observables in an event is used for flavor determination

$$B^0 \longrightarrow D^{*+} l^- \nu$$
 , $B^0 \longrightarrow D^{*\pm} \longrightarrow D^0 \pi^+$, $D^0 \longrightarrow K^- l^+ \nu$

• Δ t is measured by vertex positions of B and \overline{B} .

CP violation parameters are obtained by the fit to Δt .

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} q(\text{Acos}\Delta m\Delta t + \text{Ssin}\Delta m\Delta t)$$

ϕ 1 measurement in $B^0 \rightarrow J/\psi \pi^0$

(Z. Z Xing, PRD 61 014010 (1999))

If new physics contributes to the penguin loop, S and A shift due to different weak phase.

Constrain penguin contribution in B decays induced by $b \rightarrow ccs$ diagram without model dependen \overline{c} e.

Large asymmetry was seen in BABAR (non-zero with $4.0\,\sigma$ significance) PRL 101 021801 (2008)

ϕ 1 measurement in $B^0 \rightarrow J/\psi \pi^0$

$$N_{signal} = 332\pm22$$

$$\mathcal{B}(B^0 \to J/\psi \pi^0) =$$

(1.62 ± 0.11 ± 0.06) × 10⁻⁵

$$\mathcal{S} = -0.59 \pm 0.19 \pm 0.03$$

$$A = -0.15 \pm 0.14^{+0.04}_{-0.03}$$

 $S\neq 0$ by 3.0 σ confidence level. Consistent with Standard model (SM) expectation.

Published: PRD98 112008 (2018)

Time-dependent CPV in 3-body B decays

$$B^0 \rightarrow \pi^0 \pi^0 K^0 S, B^0 \rightarrow K^0 S K^0 S K^0 S$$

CP-even eigenstates with K^0S .

- \leftrightarrow Two-body B^0 decays with K^0_S are CP-odd eigenstates $(J/\psi K^0_S, \phi K^0_S, \eta' K^0_S \cdots)$.
- → Validation using both eigenstates is important.

$$sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff}) \frac{\textit{HFLAV}}{\text{Summer 2016}}$$

Induced by $b \rightarrow sq\bar{q}$ penguin diagram.

→ Sensitive to new physics: $S = -\xi_f \sin 2\phi_1^{\text{eff}}$. Shift in ϕ_1 from $b \rightarrow c\overline{c}s$ diagram (mainly from $b \rightarrow u$ tree contribution) is expected to be small.

 $K^{0}SK^{0}SK^{0}S$: $\Delta S = 0.02^{+0.02}_{-0.03}$ (hep-ph/0702252) $\pi^{0}\pi^{0}K^{0}S$: $\Delta S = 0.034^{+0.020}_{-0.025}$ (PLB596 163)

Center values of current results are apart from SM expectation.

Vertex reconstruction of neutral final states

B⁰ decay vertex is reconstructed using charged track path obtained by the vertex detector (SVD).

Electromagnetic calorimeter (ECL) detects photon hit postion and no path information is obtained.

 \rightarrow We can not reconstruct B^0 decay vertex using information of photons from π^0 decay.

 K^{0} S decays a point apart from B^{0} decay vertex.

ightarrow Reconstruct signal side vertex using flight direction of $K^0{}_S$ with constraint of e^+e^- interaction point.

Comparing to the 2-body decays, decay point is close to the B^0 decay vertex in $B^0 \to \pi^0 \pi^0 K^0 S$ and $B^0 \to K^0 S K^0 S K^0 S$, $K^0 S$ modes since momentum is lower than.

→ Vertex reconstruction efficiency is better by 20-30%.

ϕ 1 eff measurement in $B^0 \rightarrow \pi^0 \pi^0 K^0 S$

Signal yield with vertex information = 146.7±23.6 events

Deviation from non-CP violation is 1.8 σ .

Consistent with $\sin 2\phi_1$ from $b \rightarrow c\overline{c}s$ diagram.

ϕ 1^{eff} measurement in $B^0 \rightarrow K^0 S K^0 S K^0 S$

Signals candidates for CP violation measurement are reconstructed well ($N_{signal} = 329\pm20$). After validation of analysis procedure and systematic error estimation, CP violation parameters are measured.

Time-dependent CPV in $B^0 \rightarrow K^0 S \pi^+ \pi^- \gamma$

Induced by $b \rightarrow s \gamma$ diagram
In SM, $S \sim 0$ since contamination by right-handed photon is supressed by facor m_s/m_b .
If new physics contributes to enhance right-handed component, $S \neq 0$.

$$S^{+} \equiv S_{\pi^{+}\pi^{-}K_{S}^{0}\gamma}^{I} + S_{\pi^{+}\pi^{-}K_{S}^{0}\gamma}^{\overline{I}} = \frac{8}{1 + |\xi|^{2}} \left(\operatorname{Im}\xi \cos 2\beta - \operatorname{Re}\xi \sin 2\beta \right) a^{I},$$

$$S^{-} \equiv S_{\pi^{+}\pi^{-}K_{S}^{0}\gamma}^{I} - S_{\pi^{+}\pi^{-}K_{S}^{0}\gamma}^{\overline{I}} = \frac{8}{1 + |\xi|^{2}} \left(\operatorname{Re}\xi \cos 2\beta + \operatorname{Im}\xi \sin 2\beta \right) b^{I}.$$

 $\xi \equiv c'/c$: retio of right- to left-handed amplitudes

I denotes a symmetric region of Dalitz plane above (below) the bisector of m_{13} – m_{23}

Decay amplitude of $K_1(1270) \rightarrow \pi^+ \pi^- K_0^-$

(arxiv:1802.09433)

Time-dependent CPV in $B^0 \rightarrow K^0 S \pi^+ \pi^- \gamma$

50 ab-1 Belle II,

$$\{\mathcal{S}^+,\mathcal{S}^-,\mathbf{a}^I,\mathbf{b}^I\} = \{0.17,0.13,-0.5,-0.15\}$$
 Limit from $B \to K^*e^+e^-$
$$\{0.13,0.04,-0.3,-0.3\}$$
 — LHCb 8fb⁻¹
$$\{0.13,-0.03,-0.15,-0.5\}$$
 — LHCb 22fb⁻¹

Allowed region from $B \rightarrow X_s \gamma$ measurment and theory

S+ and S- from time-dependent analysis on Dalitz space leads to constrain on Willson coefficients $Re(C_7'/C_7)$ and $Im(C_7'/C_7)$.

It can be accessible with statistic in Belle II but analysis strategy is demonstrated using Belle full data. \rightarrow Analysis is on-going.

Summary

Time-dependent CP violation measurements are on the way using full data set of the Belle experiment.

We focus on recently published two decay modes.

$$B^0 \to J/\psi \ \pi^{\ 0}$$
 $\mathcal{S} = -0.59 \pm 0.19 \pm 0.03$ PRD98 112008 (2018) $\mathcal{A} = -0.15 \pm 0.14^{+0.04}_{-0.03},$

$$B^0 \rightarrow \pi^{~0} \pi^{~0} K^0_S$$
 $\sin 2\phi_1^{\text{eff}} = 0.92^{+0.27}_{-0.31} \text{ (stat.) } ^{+0.10}_{-0.11} \text{ (syst.)}$ PRD99 011102 (2019) $\mathcal{A} = 0.28 \pm 0.21 \text{ (stat.) } \pm 0.04 \text{ (syst.)}$

→ consitent with SM expectation.

Further studies for other CP-eigenstates is still on-going. $B^0 \rightarrow K^0{}_S K^0{}_S K^0{}_S$ will be updated in near future.