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Nested hypothesis tests 
and |Vcb|

are related to the Yukawa coupling matrices as Mq = vY q/
p
2, where v is the vacuum expectation

value (the neutral component) of the Higgs field. At this stage, Mu and Md are general complex

matrices to be diagonalised using the singular value decomposition Mq = V †

qL
mqVqR, where

VL,R is unitary and mq is diagonal, real, and positive. The mass eigenstates are identified as
UL = VuLU 0

L
and UR = VuRU 0

R
, and similarly for D.

Expressing the interactions of quarks with gauge bosons in terms of mass eigenstates does
not modify the structure of the Lagrangian in the case of neutral gauge bosons, but it a↵ects
charged-current interactions between quarks and W±, described by the Lagrangian

LW± = �
g
p
2
U i�

µ
1� �5

2
(VCKM)

ij
DjW

+
µ + h.c., (2)

where g is the electroweak coupling constant and VCKM = V †

uL
VdL is the unitary CKM matrix:

VCKM =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (3)

The CKM matrix induces flavour-changing transitions inside and between generations in the
charged sector at tree level (W± interaction). By contrast, there are no flavour-changing
transitions in the neutral sector at tree level (Z0 and photon interactions). The CKM matrix
stems from the Yukawa interaction between the Higgs boson and the fermions, and it originates
from the misalignment in flavour space of the up and down components of the SU(2)L quark
doublets of the SM (as there is no dynamical mechanism in the SM to enforce VuL = VdL).
The VCKM,ij CKM matrix elements (hereafter, Vij) represent the couplings between up-type
quarks Ui = (u, c, t) and down-type quarks Dj = (d, s, b). There is some arbitrariness in the
conventions used to define this matrix. In particular, the relative phases among the left-handed
quark fields can be redefined, reducing the number of real parameters describing this unitary
matrix from three moduli and six phases to three moduli and one phase [more generally, for N
generations, one has N(N � 1)/2 moduli and (N � 1)(N � 2)/2 phases]. Because CP conjugate
processes correspond to interaction terms in the Lagrangian related by Hermitian conjugation,
the presence of a phase, and thus the complex nature of the CKM matrix, may induce di↵erences
between rates of CP conjugate processes, leading to CP violation. This does not occur for only
two generations, where VCKM is real and parametrised by a single real parameter, the Cabibbo
angle.

According to experimental evidence, transitions within the same generation are characterised
by VCKM elements of O(1). Those between the first and second generations are suppressed by a
factor of O(10�1); those between the second and third generations by a factor of O(10�2); and
those between the first and third generations by a factor of O(10�3). This hierarchy can be
expressed by defining the four phase convention–independent quantities as follows:
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|Vus|

2

|Vud|
2 + |Vus|

2
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|Vcb|
2

|Vud|
2 + |Vus|

2
, ⇢̄+ i⌘̄ = �

VudV ⇤

ub

VcdV ⇤

cb

. (4)

An alternative convention exists in the literature for the last two CKM parameters, corresponding
to

⇢+ i⌘ =
V ⇤

ub

VusV ⇤

cb

=

✓
1 +

1

2
�2

◆
(⇢̄+ i⌘̄) +O(�4). (5)

The CKM matrix can be expanded in powers of the small parameter � (which corresponds to
sin ✓C ' 0.22) [9], exploiting the unitarity of VCKM to highlight its hierarchical structure. This
expansion yields the following parametrisation of the CKM matrix up to O

�
�6

�
:
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The determination of |Vcb| from exclusive semileptonic B ! D⇤`⌫ decays is sensitive to the

choice of form factor parametrization. Larger |Vcb| values are obtained fitting the BGL versus the

CLN parametrization to recent Belle measurements. For the BGL parametrization, published fits

use di↵erent numbers of parameters. We propose a method based on nested hypothesis tests to

determine the optimal number of BGL parameters to fit the data, and find that six parameters are

optimal to fit the Belle tagged and unfolded measurement [1]. We further explore the di↵erences

between fits that use di↵erent numbers of parameters. The fits which yield |Vcb| values in better

agreement with determinations from inclusive semileptonic decays, tend to exhibit tensions with

heavy quark symmetry expectations. These have to be resolved before the determinations of |Vcb|
from exclusive and inclusive decays can be considered understood.

I. INTRODUCTION

In 2017 the Belle Collaboration presented, for the first
time, unfolded measurements of the di↵erential decay dis-
tributions for B ! D⇤`⌫̄ decays [1], and another mea-
surement appeared more recently [2]. The unfolded mea-
surement [1] permitted outside groups to perform their
own fits to the data, using di↵erent parametrizations of
the B ! D⇤`⌫̄ form factors to extract |Vcb|. The choice of
form factor parametrizations can have a sizable impact
on the extracted value of |Vcb|. This is because heavy
quark symmetry gives the strongest constraints on the
di↵erential rate at zero recoil (maximal dilepton invari-
ant mass, q2) [3–10], resulting in both continuum meth-
ods and lattice QCD giving the most precise information
on the normalization of the rate at zero recoil. However,
phase space vanishes near maximal q2 as

p
q2max � q2,

so the measured q2 spectrum has to be fitted over some
range to extract |Vcb|. This results in sensitivity to the
functional form of the fitted parametrization.

Fitting Belle’s unfolded measurement [1] to the BGL
parametrization [11, 12] yielded higher values of |Vcb| [13,
14] than fitting the CLN [15] parametrization to the same
dataset. (To our knowledge, during 1997–2017 all BaBar
and Belle measurements of |Vcb| from B ! D⇤` ⌫̄ used
the CLN parametrization.) The BGL results are in better
agreement with |Vcb| extracted from inclusive B ! Xc`⌫̄
decays [16],

|Vcb|CLN = (38.2± 1.5)⇥ 10�3 , [1] , (1a)

|Vcb|BGL332 = (41.7+2.0
�2.1)⇥ 10�3 , [13] , (1b)

|Vcb|BGL222 = (41.9+2.0
�1.9)⇥ 10�3 , [14] . (1c)

Here the BGLijk notation highlights that these fits have
di↵erent numbers of parameters (the notation is defined
below in Sec. II), in particular 8 and 6 parameters, re-
spectively. In Ref. [2], the Belle Collaboration published
an “untagged” measurement of B ! D⇤`⌫̄, without fully
reconstructing the second B meson in the collision using

hadronic decay modes. In that analysis, fits to the CLN
and a 5-parameter version of the BGL parametrization
were performed [2], and the results are in agreement,

|Vcb|CLN = (38.4± 0.9)⇥ 10�3 , (2a)

|Vcb|BGL122 = (38.3± 1.0)⇥ 10�3 . (2b)

The BGL method implements constraints on the
shapes of the B ! D⇤ form factors based on ana-
lyticity and unitarity [17–19]. Three conveniently cho-
sen linear combinations of form factors are expressed in
terms of power series in a small conformal parameter,
0 < z ⌧ 1. As indicated in Eqs. (1) and (2), there are
varying choices for the total number of coe�cients, N ,
in the three power series, ranging from N = 5 [2], to
N = 6 [14, 20], and N = 8 [13, 21, 22]. The CLN [15]
prescription uses similar analyticity and unitarity con-
straints on the B ! D form factor, heavy quark e↵ec-
tive theory (HQET) [7, 8] relations between the B ! D
and B ! D⇤ form factors, and QCD sum rule calcula-
tions [23–25] of the order ⇤QCD/mc,b subleading Isgur-
Wise functions [9, 10]. It has 4 fit parameters. (This
version of the CLN parametrization, as used to extract
|Vcb|, is not self consistent at O(⇤QCD/mc,b) [26].)

The relation between the above fits is nontrivial, and
has not been studied systematically. The goal of this pa-
per is to explore their di↵erences, and to devise a quanti-
tative method to identify the optimal number of param-
eters in the BGL framework. Using a prescription based
on a nested hypothesis test, we find that at least 6 pa-
rameters are required to describe the data from Ref. [1].
The N = 5 and 6 fits we study in detail, yield |Vcb| values
in better agreement with determinations from inclusive
semileptonic decays, but exhibit tensions with expecta-
tions from heavy quark symmetry.
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of B meson decays that do not have experimentally-
measured branching fractions is inclusively reproduced
by PYTHIA [10]. For the continuum e

+
e
�

! qq̄ events,
the initial quark pair is hadronised by PYTHIA, and
hadron decays are modelled by EvtGen. The final-
state radiation from charged particles is added using
PHOTOS [11]. Detector responses are simulated with
GEANT3 [12].

B. Event reconstruction and selection criteria

Charged particle tracks are required to originate from
the interaction point, and to have good track fit quality.
The criteria for the track impact parameters in the r ��

and z directions are: dr <2 cm and |dz| < 4 cm, respec-
tively. In addition we require that each track has at least
one associated hit in any layer of the SVD detector. For
pion and kaon candidates, we use particle identification
likelihoods determined using Cherenkov light yield in the
ACC, the time-of-flight information from the TOF, and
dE/dx from the CDC.

Neutral D
0 meson candidates are reconstructed only

in the clean D
0

! K
�

⇡
+ decay channel. The daughter

tracks are fit to a common vertex using a Kalman fit algo-
rithm, with a �

2-probability requirement of greater than
10�3 to reject background. The reconstructed D

0 mass
is required to be in a window of ±13.75 MeV/c

2 from
the nominal D

0 mass of 1.865 GeV/c
2, corresponding to

a width of 2.5 �, determined from data.
The D

0 candidates are combined with an additional
pion that has a charge opposite that of the kaon, to form
D

⇤+ candidates. Pions produced in this transition are
close to kinematic threshold, with a mean momentum of
approximately 100 MeV/c, hence are denoted slow pions,
⇡
+
s . There are no SVD hit requirements for slow pions.

Another vertex fit is performed between the D
0 and the

⇡
+
s and a �

2-probability requirement of greater than 10�3

is again imposed. The invariant mass di↵erence between
the D

⇤ and the D
0 candidates, �m = mD⇤ �mD0 , is first

required to be less than 165 MeV/c
2 for the background

fit, and further tightened for the signal yield determina-
tion.

Although the contribution from e
+
e
�

! qq̄ continuum
is relatively small in this analysis, we further suppress
prompt charm by imposing an upper threshold on the
D

⇤ momentum of 2.45 GeV/c in the CM frame (Fig. 1).
Candidate B mesons are reconstructed by combining

D
⇤ candidates with an oppositely charged electron or

muon. Electron candidates are identified using the ratio
of the energy detected in the ECL to the momentum of
the track, the ECL shower shape (E9/E25), the distance
between the track at the ECL surface and the ECL clus-
ter centre, the energy loss in the CDC (dE/dx) and the
response of the ACC. For electron candidates we search
for nearby bremsstrahlung photons in a cone of 3 degrees
around the electron track, and sum the momenta with
that of the electron. Muons are identified by their pen-
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FIG. 1. The D⇤ momenta in the CM frame, for on-resonance
and scaled o↵-resonance data.

etration range and transverse scattering in the KLM de-
tector. In the momentum region relevant to this analysis,
charged leptons are identified with an e�ciency of about
90%, while the probabilities to misidentify a pion as an
electron or muon is 0.25% and 1.5% respectively. We im-
pose lower thresholds on the momentum of the leptons,
such that they reach the respective particle identification
detectors for good hadron fake rejection. Here we impose
lab frame momentum thresholds 0.3 GeV/c for electrons
and 0.6 GeV/c for muons. We furthermore require an
upper threshold of 2.4 GeV/c in the CM frame to reject
continuum events.

III. DECAY KINEMATICS

b c

d d

⌫`

`+

W+

B0 D⇤�

FIG. 2. Tree level Feynman diagram for B0 ! D⇤�`+⌫`.

The tree level transition of the B
0

! D
⇤�

`
+
⌫` decay

is shown in Fig. 2. Three angular angular variables and
the hadronic recoil are used to describe this decay. The
latter is defined as follows. Iwhere q

2 is the momentum
transfer between the B and the D

⇤ meson, and mB , mD⇤

are the the masses of B and D
⇤ mesons respectively. The

range of w is restricted by the value of q
2 such that the

minimum value of q
2 = 0 corresponds to the maximum

value of w,

wmax =
m

2
B + m

2
D⇤

2mBmD
. (3)

|Vcb |

+ QCD

Prel. ’Belle Tagged’
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• Decay rate described by 3 form factors 
(in zero lepton mass limit)

!3

The Boyd-Grinstein-Lebed Parametrization

6

The three angular variables are depicted in Fig.3 and are
defined as follows:

• ✓`: the angle between the D
⇤ and the lepton, de-

fined in the rest frame of W boson.

• ✓v: the angle between the D
0 and the D

⇤, defined
in the rest frame of D

⇤ meson.

• �: the angle between the two planes formed by the
decays of the W and the D

⇤ meson, defined in the
rest frame of the B

0 meson.

18
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Figure 2.3: [B ! D
⇤
`⌫ decay geometry] Geometry of B ! D

⇤
`⌫ decays.

The di�erential decay rate is given by

d�(B�D⇤`�)
dwdcos�V dcos�`d� =

3G2
F

4(4�)4 |Vcb|
2mBm2

D⇤

p
w2 � 1(1 � 2wr + r2)⇥

[(1 � cos�`)2sin2�V |H+(w)|2

+(1 + cos�`)2sin2�V |H�(w)|2

+4sin2�`cos2�V |H0(w)|2

�4sin�`(1 � cos�`)sin�V cos�V cos�H+(w)H0(w)

+4sin�`(1 + cos�`)sin�V cos�V cos�H�(w)H0(w)

�2sin2�`sin
2�V cos2�H+(w)H�(w)]

where Hi(w) are called the helicity form factors. These form factors are related to

another set of form factors, hV (w), hA1(w), hA2(w) and hA3(w), as follows.

Hi = �mB
R(1 � r2)(w + 1)

2
p

1 � 2wr + r2
hA1(w) �Hi(w) (2.19)

where �Hi(w) are given by

�H±(w) =
�

1�2wr+r2

1�r

�
1 ⌥

�
w�1
w+1R1(w)

�

�H0(w) = 1 + w�1
1�r (1 � R2(w))

(2.20)

FIG. 3. Definition of the angles ✓`, ✓v and � for the decay
B0 ! D⇤�`+⌫`.

IV. SEMILEPTONIC DECAYS

In the massless lepton limit, the di↵erential decay rate
of B ! D

⇤
`⌫ decays is given by [2]

d�(B̄ ! D
⇤
`⌫`)

dwd cos ✓`d cos ✓V d�
=

⌘
2
EW3mBm

2
D⇤

4(4⇡)2
G

2
F |Vcb|

2
p

w2 � 1(1 � 2wr + r
2)

�
(1 � cos ✓`)

2 sin ✓
2
V H

2
+ + (1 + cos ✓

2
` )

2 sin ✓
2
V H

2
�

+4 sin ✓
2
` cos ✓

2
V H

2
0 � 2 sin ✓

2
` sin ✓

2
V cos 2�H+H�

�4 sin ✓`(1 � cos ✓`) sin ✓V cos ✓V cos �H+H0

+4 sin ✓`(1 + cos ✓`) sin ✓V cos ✓V cos �H�H0} , (4)

where r = mD⇤/mB , GF = (1.6637 ± 0.00001) ⇥

10�5~c2GeV
�2 and ⌘EW is a small electroweak correc-

tion (equal to 1.006 in Ref. [13]).

A. The CLN Parameterisation

The helicity amplitudes H±,0 in Eq. 4 are given in
terms of three form factors. In the Caprini-Lellouch-
Neubert (CLN) parameterisation [2] one writes these ex-
pressions in terms of the form factor hA1(w) and the form

factor ratios R1,2(w). They are defined as follows.

hA1(w) = hA1(1)
⇥
1 � 8⇢

2
z + (53⇢

2
� 15)z2

�(231⇢
2

� 91)z3
⇤
,

R1(w) = R1(1) � 0.12(w � 1) + 0.05(w � 1)2,

R2(w) = R2(1) � 0.11(w � 1) � 0.06(w � 1)2, (5)

where z = (
p

w + 1�
p

2)/(
p

w + 1+
p

2), and there are
four independent parameters in total. After integrating
over the angles, the w distribution is proportional to

F(w) =h
2
A1

(w)

✓
1 + 4

w

w + 1

1 � 2wr + r
2

(1 � r2)

◆�1


2
1 � 2wr + r

2

(1 � r)2

✓
1 + R

2
1(w)

w � 1

w + 1

◆
+

✓
1 + (1 � R2(w))

w � 1

1 � r

◆2
#

. (6)

B. The BGL Parameterisation

A more general parameterisation comes from Boyd,
Grinstein and Lebed (BGL) [3], recently used in Refs. [14,
15]. In their approach, the helicity amplitudes Hi are
given by

H0(w) = F1(w)/
p

q2 ,

H±(w) = f(w) ⌥ mBmD⇤

p
w2 � 1g(w) . (7)

The relation between the form factors in the BGL and
CLN notations are

f =
p

mBmD⇤(1 + w)hA1 ,

g = hV /
p

mBmD⇤ ,

F1 = (1 + w)(mB � mD⇤)
p

mBmD⇤A5 , (8)

and

R1(w) = (w + 1)mBmD⇤
g(w)

f(w)
,

R2(w) =
w � r

w � 1
�

F1

mB(w � 1)f1(w)
. (9)

The three BGL form factors can be written as a series in
z,

f(z) =
1

P1+(z)�f (z)

1X

n=0

a
f
nz

n
,

F1(z) =
1

P1+(z)�F1(z)

1X

n=0

a
F1
n z

n
,

g(z) =
1

P1�(z)�g(z)

1X

n=0

a
g
nz

n
. (10)

In these equations the Blaschke factors, P1±, are given
by

P1±(z) =
nY

P=1

z � zP

1 � zzP
, (11)
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II. DIFFERENTIAL DECAY RATE AND BGL PARAMETERIZATION

Using the notation in Ref. [12], the B̄ ! D
⇤ matrix elements are defined as

hD
⇤(", p0)|c̄�µ

b|B̄(p)i = ig✏
µ⌫↵�

"
⇤
⌫p↵p

0
� , (5)

hD
⇤(", p0)|c̄�µ

�
5
b|B̄(p)i = f"

⇤µ + ("⇤ · p)[a+(p+ p
0)µ + a�(p � p

0)µ], (6)

where "
µ is the polarization tensor of the vector D⇤ meson. In the limit when the final-state leptons are massless,

the full di↵erential decay rate for B̄ ! D
⇤
`⌫ is

d�(B ! D
⇤
`⌫)

dw d cos ✓` d cos ✓v d�
=

3⌘2ewG
2
F |Vcb|

2

1024⇡4
|pD⇤ |q

2
r

✓
(1 � cos ✓`)

2 sin2 ✓vH
2
+ + (1 + cos ✓`)

2 sin2 ✓vH
2
�

+ 4 sin2 ✓` cos
2
✓vH

2
0 � 2 sin2 ✓` sin

2
✓v cos 2�H+H�

� 4 sin ✓`(1 � cos ✓`) sin ✓v cos ✓v cos�H+H0

+ 4 sin ✓`(1 + cos ✓`) sin ✓v cos ✓v cos�H�H0

◆
, (7)

where qµ is the 4-momentum of the lepton system, r ⌘ mD⇤/mB , and |pD⇤ | is the magnitude of theD⇤ 3-momentum
in the rest frame of the B̄:

w ⌘
m

2
B +m

2
D⇤ � q

2

2mBmD⇤
, q

2 = m
2
B +m

2
D⇤ � 2mBmD⇤w, |pD⇤ | = mD⇤

p
w2 � 1. (8)

Here, H+, H�, and H0 are form factors associated with each of the three helicity states of the D
⇤, all of which are

functions of q2. Also, ✓` is the angle between the anti-neutrino and the direction antiparallel to the D
⇤ in the rest

frame of the leptonic system, ✓v is the angle between the D
⇤ momentum and its daughter D meson, and � is the

angle between the planes defined by the the leptonic system and the D
⇤ system. The factor ⌘ew incorporates the

leading electroweak corrections [17], ⌘ew = 1 + ↵/⇡ ln(MZ/mB) ' 1.0066. In terms of the form factors in Eqs. (5)
and (6),

H+ = f � mB |pD⇤ |g, (9)

H� = f +mB |pD⇤ |g, (10)

H0 =
1

mD⇤
p

q2


2m2

B |pD⇤ |
2
a+ �

1

2

�
q
2

� m
2
B +m

2
D⇤

�
f

�
⌘

F1p
q2

. (11)

A detailed discussion about the BGL method for parameterizing the form factors f , g, and F1 can be found in
Ref. [12]. The final result gives a parametrization of each form factor in terms of N + 1 coe�cients:

g(z) =
1

Pg(z)�g(z)

NX

n=0

anz
n
, f(z) =

1

Pf (z)�f (z)

NX

n=0

bnz
n
, F1(z) =

1

PF1(z)�F1(z)

NX

n=0

cnz
n
, (12)

where the conformal variable z is defined as

z ⌘

p
w + 1 �

p
2a

p
w + 1 +

p
2a

. (13)

Here, a = 1 can be chosen such that z = 0 corresponds to zero recoil, and the coe�cients an, bn, and cn are
bounded by unitarity [10],

NX

n=0

|an|
2

 1, and
NX

n=0

�
|bn|

2 + |cn|
2
�

 1, (14)

From Eq. (11), F1(0) = (mB � mD⇤)f(0); hence b0 and c0 are not independent, i.e.,

c0 =

✓
(mB � mD⇤)�F1(0)

�f (0)

◆
b0. (15)

• BGL method: Expand form factors using dispersion relations & unitarity
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µ is the polarization tensor of the vector D⇤ meson. In the limit when the final-state leptons are massless,
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where qµ is the 4-momentum of the lepton system, r ⌘ mD⇤/mB , and |pD⇤ | is the magnitude of theD⇤ 3-momentum
in the rest frame of the B̄:
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Here, H+, H�, and H0 are form factors associated with each of the three helicity states of the D
⇤, all of which are

functions of q2. Also, ✓` is the angle between the anti-neutrino and the direction antiparallel to the D
⇤ in the rest

frame of the leptonic system, ✓v is the angle between the D
⇤ momentum and its daughter D meson, and � is the

angle between the planes defined by the the leptonic system and the D
⇤ system. The factor ⌘ew incorporates the

leading electroweak corrections [17], ⌘ew = 1 + ↵/⇡ ln(MZ/mB) ' 1.0066. In terms of the form factors in Eqs. (5)
and (6),
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A detailed discussion about the BGL method for parameterizing the form factors f , g, and F1 can be found in
Ref. [12]. The final result gives a parametrization of each form factor in terms of N + 1 coe�cients:
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where the conformal variable z is defined as
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Here, a = 1 can be chosen such that z = 0 corresponds to zero recoil, and the coe�cients an, bn, and cn are
bounded by unitarity [10],
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From Eq. (11), F1(0) = (mB � mD⇤)f(0); hence b0 and c0 are not independent, i.e.,

c0 =

✓
(mB � mD⇤)�F1(0)

�f (0)

◆
b0. (15)

Combination of f and a+

Conformal variable z:  

z =
w + 1 − 2a

w + 1 + 2a

QCD encoded in coefficients:

{an, bn, cn}

[arXiv:hep-ph/9705252]

[arXiv:1703.08170]

c0 = constants × b0
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• Truncate too soon:

‣ Model dependence in extracted result for |Vcb|?


• Truncate too late:

‣ Unnecessarily increase variance on |Vcb|?

!4

The Problem at a glance

2
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Using the notation in Ref. [12], the B̄ ! D
⇤ matrix elements are defined as

hD
⇤(", p0)|c̄�µ

b|B̄(p)i = ig✏
µ⌫↵�

"
⇤
⌫p↵p

0
� , (5)

hD
⇤(", p0)|c̄�µ

�
5
b|B̄(p)i = f"

⇤µ + ("⇤ · p)[a+(p+ p
0)µ + a�(p � p

0)µ], (6)

where "
µ is the polarization tensor of the vector D⇤ meson. In the limit when the final-state leptons are massless,

the full di↵erential decay rate for B̄ ! D
⇤
`⌫ is

d�(B ! D
⇤
`⌫)

dw d cos ✓` d cos ✓v d�
=

3⌘2ewG
2
F |Vcb|

2

1024⇡4
|pD⇤ |q

2
r

✓
(1 � cos ✓`)

2 sin2 ✓vH
2
+ + (1 + cos ✓`)

2 sin2 ✓vH
2
�

+ 4 sin2 ✓` cos
2
✓vH

2
0 � 2 sin2 ✓` sin

2
✓v cos 2�H+H�

� 4 sin ✓`(1 � cos ✓`) sin ✓v cos ✓v cos�H+H0

+ 4 sin ✓`(1 + cos ✓`) sin ✓v cos ✓v cos�H�H0

◆
, (7)

where qµ is the 4-momentum of the lepton system, r ⌘ mD⇤/mB , and |pD⇤ | is the magnitude of theD⇤ 3-momentum
in the rest frame of the B̄:

w ⌘
m

2
B +m

2
D⇤ � q

2

2mBmD⇤
, q

2 = m
2
B +m

2
D⇤ � 2mBmD⇤w, |pD⇤ | = mD⇤

p
w2 � 1. (8)

Here, H+, H�, and H0 are form factors associated with each of the three helicity states of the D
⇤, all of which are

functions of q2. Also, ✓` is the angle between the anti-neutrino and the direction antiparallel to the D
⇤ in the rest

frame of the leptonic system, ✓v is the angle between the D
⇤ momentum and its daughter D meson, and � is the

angle between the planes defined by the the leptonic system and the D
⇤ system. The factor ⌘ew incorporates the

leading electroweak corrections [17], ⌘ew = 1 + ↵/⇡ ln(MZ/mB) ' 1.0066. In terms of the form factors in Eqs. (5)
and (6),

H+ = f � mB |pD⇤ |g, (9)

H� = f +mB |pD⇤ |g, (10)

H0 =
1

mD⇤
p

q2


2m2

B |pD⇤ |
2
a+ �

1

2

�
q
2

� m
2
B +m

2
D⇤

�
f

�
⌘

F1p
q2

. (11)

A detailed discussion about the BGL method for parameterizing the form factors f , g, and F1 can be found in
Ref. [12]. The final result gives a parametrization of each form factor in terms of N + 1 coe�cients:
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• At what order should you truncate the series? 

Can get intertwined, as three 
form factors are involved

What is the ideal truncation order?

BGLna nb nc

{a0,…,na−1, b0,…,nb−1, c1,…,nc}
Our Notation

Careful: [arXiv:1905.08209, PLB] 

introduced an identical notation, but


with another meaning! 
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BGLna,nb,nc

BGLna+1,nb,nc

BGLna,nb+1,nc

BGLna,nb,nc+1

Challenge nested fits

!5

Different approaches on the market

This work 
[arXiv:1902.09553, accepted by PRD] 

Gambino, Jung, Schacht 
[arXiv:1905.08209, PLB] 

Use a nested hypothesis test

to determine optimal truncation order

Constrain contributions

from higher order coefficients


using unitarity bounds

N

∑
n=0

|an |2 ≤ 1
N

∑
n=0

( |bn |2 + |cn |2 ) ≤ 1

N

∑
n=0

|an |2

χ2
penalty

1

χ2 → χ2 + χ2
penalty

Test statistics & Decision boundary 

Δχ2 = χ2
N − χ2

N+1

Distributed like a 𝝌2-distribution with 1 dof

(Wilk’s theorem)

Δχ2 > 1

e.g.



Florian Bernlochner EPS-HEP 2019 — Ghent, Belgium

BGLna,nb,nc

BGLna+1,nb,nc

BGLna,nb+1,nc

BGLna,nb,nc+1

Challenge nested fits

!6

Different approaches on the market

This work 
[arXiv:1902.09553, accepted by PRD] 

Gambino, Jung, Schacht 
[arXiv:1905.08209, PLB] 

Use a nested hypothesis test

to determine optimal truncation order

Constrain contributions

from higher order coefficients


using unitarity bounds

N

∑
n=0

|an |2 ≤ 1
N

∑
n=0

( |bn |2 + |cn |2 ) ≤ 1

N

∑
n=0

|an |2

χ2
penalty

1

χ2 → χ2 + χ2
penalty

Test statistics & Decision boundary 

Δχ2 = χ2
N − χ2

N+1

Distributed like a 𝝌2-distribution with 1 dof

(Wilk’s theorem)

Δχ2 > 1

e.g.



Florian Bernlochner EPS-HEP 2019 — Ghent, Belgium !7

Nesting procedure

Steps:

1

2

Carry out nested fits with one 
parameter added

BGLna,nb,nc

BGLna+1,nb,nc

BGLna,nb+1,nc

BGLna,nb,nc+1

Accept descendant over 
parent fit, if ∆𝝌2 > 1

Repeat 1 and 2 until you

find stationary points

If multiple stationary points 
remain, choose the one with 
smallest N, then smallest 𝝌2

3

4
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Nesting procedure

Steps:

1

2

Carry out nested fits with one 
parameter added

Accept descendant over 
parent fit, if ∆𝝌2 > 1

Repeat 1 and 2 until you

find stationary points

If multiple stationary points 
remain, choose the one with 
smallest N, then smallest 𝝌2

3

4

∆𝝌2 > 1

∆𝝌2 < 1

BGLna,nb,nc

BGLna+1,nb,nc

BGLna,nb+1,nc

BGLna,nb,nc+1



Florian Bernlochner EPS-HEP 2019 — Ghent, Belgium !9

Nesting procedure

Steps:

1

2

Carry out nested fits with one 
parameter added

Accept descendant over 
parent fit, if ∆𝝌2 > 1

Repeat 1 and 2 until you

find stationary points

If multiple stationary points 
remain, choose the one with 
smallest N, then smallest 𝝌2

3

4

BGLna+1,nb,nc

BGLna+2,nb,nc

BGLna+1,nb+1,nc

BGLna+1,nb,nc+1∆𝝌2 < 1
stationary
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Nesting procedure

Steps:

1

2

Carry out nested fits with one 
parameter added

Accept descendant over 
parent fit, if ∆𝝌2 > 1

Repeat 1 and 2 until you

find stationary points

If multiple stationary points 
remain, choose the one with 
smallest N, then smallest 𝝌2

3

4

BGLna+1,nb,nc

BGLna+2,nb,nc

BGLna+1,nb+1,nc

BGLna+1,nb,nc+1∆𝝌2 < 1
stationary
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Applied to Belle Tagged result

1

Tagged Belle Measurement:

nc

na
1 2 3 1 2 3 1 2 3

1
33.2 31.6 31.2 33.0 29.1 28.9 30.4 29.1 28.9

38.7± 1.1 38.6± 1.1 38.7± 1.1 39.1± 1.6 40.8± 1.7 40.8± 1.7 40.8± 1.9 40.7± 1.9 40.7± 1.9

2
32.9 31.3 31.1 32.7 27.7 27.7 29.2 27.7 27.7

38.9± 1.2 38.8± 1.2 38.9± 1.2 39.6± 1.7 41.7± 1.9 41.7± 1.9 41.9± 2.1 41.8± 2.1 41.8± 2.1

3
31.7 31.3 31.0 29.1 27.7 27.7 29.2 27.6 23.2

39.1± 1.2 38.7± 1.4 38.7± 1.3 42.0± 2.1 41.9± 2.1 41.8± 2.1 41.9± 1.9 41.8± 2.0 41.5± 2.1

nb = 1 nb = 2 nb = 3

Untagged Belle Measurement:

nc

na
1 2 3 1 2 3 1 2 3

1
55.5 55.2 49.9 52.3 49.3 45.5 46.3 46.3 45.5

40.5± 0.7 40.6± 0.7 40.4± 0.7 40.1± 0.7 39.1± 1.0 39.0± 1.0 38.4± 1.0 38.4± 1.0 39.0± 0.9

2
52.5 50.4 49.8 46.0 43.1 43.0 43.4 43.6 41.8

40.2± 0.7 40.4± 0.7 40.4± 0.7 39.5± 0.8 37.5± 1.5 37.3± 1.7 38.4± 1.0 38.4± 0.9 37.5± 1.4

3
50.9 50.3 44.3 43.4 42.2 41.5 41.5 42.1 41.6

40.4± 0.7 40.3± 0.7 40.3± 0.7 38.4± 1.1 37.4± 1.2 38.3± 1.5 37.9± 1.1 37.5± 1.2 38.2± 1.4

nb = 1 nb = 2 nb = 3

Untagged + Tagged Belle Measurement:

nc

na
1 2 3 1 2 3 1 2 3

1
99.4 99.1 95.0 98.1 97.8 94.4 97.1 97.0 90.5

40.0± 0.7 40.1± 0.7 40.0± 0.7 39.8± 0.7 39.5± 0.9 39.5± 0.9 39.1± 0.9 39.1± 0.9 40.4± 1.0

2
95.7 93.4 93.4 91.8 91.8 91.7 91.7 91.6 85.7

39.8± 0.7 39.9± 0.7 39.9± 0.7 39.2± 0.7 39.1± 1.0 39.0± 1.0 39.0± 0.9 39.0± 1.0 39.7± 1.1

3
93.8 93.4 93.3 91.7 91.5 90.6 91.7 90.0 90.8

39.9± 0.7 39.8± 0.7 39.8± 0.8 39.0± 1.0 39.0± 1.1 38.4± 0.8 39.0± 0.8 38.4± 1.0 38.4± 1.1

nb = 1 nb = 2 nb = 3

BGL111 → BGL211 → BGL221 → BGL222 stationary

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
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[arXiv:1702.01521]

4 x 1D projections 

of kinematic variables + 

correlations


Unfolded for detector effects 
and migrations
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Toy study to illustrate the possible bias

6
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FIG. 3. The pull constructed from a large ensemble of pseudo-experiments using 3rd order terms of the 1-times (left plot) and

10-times scenario (right plot) described in the text. The pull of the fits selected by the nested hypothesis prescription (black)

show no bias or under-coverage of uncertainties. Also shown in red is the pull from a BGL122 fit, showing a large bias on the

value of |Vcb|. Mean (µ) and standard deviation (�) from normal distributions fitted to the ensembles are also provided.

data sets. These were generated using the BGL333

parametrization, i.e., with nine coe�cients. The six lower
order coe�cients {ã0,1, b̃0,1, c̃1,2} were chosen to be iden-
tical to the BGL222 fit results of Fig. I. The 3rd order
terms {ã2, b̃2, c̃3} were chosen according to two di↵erent
scenarios: Either 1 or 10 times the size of the {ã1, b̃1, c̃2}
coe�cients in the BGL222 fit, as shown in Table III. We
call these the ‘1-times’ and ‘10-times’ scenarios, respec-
tively. Ensembles were constructed as follows. First, pre-
dictions for the 40 bins of the tagged measurement [1]
were produced. Ensembles of pseudo-data sets were then
generated using the full experimental covariance, assum-
ing Gaussian errors, and then each pseudo-data set was
fit according to the nested hypothesis test prescription.

The frequency with which particular BGLijk

parametrizations are selected are shown in Table IV, for
both the 1- and 10-times scenarios. For each selected fit
hypothesis, the recovered value, |Vcb|rec, and the asso-
ciated uncertainty, �, may then be used to construct a
pull, i.e., the normalized di↵erence (|Vcb|rec�|Vcb|true)/�,
where |Vcb|true is the ‘true’ value used to construct the
ensembles. If a fit or a procedure is unbiased, the
corresponding pull distribution should follow a standard
normal distribution (mean of zero, standard deviation
of unity). In Figure 3 the pull distributions for both the
1- and 10-times scenarios are shown and compared to

Parameter Value ⇥ 10
2

Value ⇥ 10
2

ã2 2.6954 26.954

b̃2 �0.2040 �2.040

c̃3 0.5350 5.350

TABLE III. Fit coe�cients used to construct the ensembles of

toy experiments. The third order terms {ã2, b̃2, c̃3} are taken

either as 1 or 10 times the second order terms {ã1, b̃1, c̃2} in

the BGL222 fit shown in Fig. III.

that of the BGL122 parametrization. One sees that the
nested hypothesis test proposed in this paper selects fit
hypotheses that provide unbiased values for |Vcb| in both
scenarios. However, the BGL122 fit shows significant
biases. In the ensemble tests the BGL122 fits have mean
�2 values of 41.0 and 56.6, respectively (with 35 degrees
of freedom). For the 1-times scenario, this produces an
acceptable fit probability on average. Nonetheless, the
recovered value of |Vcb| is biased by about 1.3�.

VI. CONCLUSIONS

We studied the di↵erences of the determinations of
|Vcb| from exclusive semileptonic B ! D⇤`⌫ decays, de-
pending on the truncation order of the BGL parametriza-
tion of the form factors used to fit the measured dif-
ferential decay distributions. Since the 2018 untagged
Belle measurement [2] used a five-parameter BGL fit,
Refs. [14, 20] used a six-parameter fit, and Refs. [13, 22]
used an eight-parameter one, we explored di↵erences be-
tween the five, six, seven, and eight parameter fits.
We proposed using nested hypothesis tests to deter-

mine the optimal number of fit parameters. For the 2017
Belle analysis [1], six parameters are preferred. Including
additional fit parameters only improves �2 marginally.
Comparing the result of the BGL122 fit used in the 2018
untagged Belle analysis [2] to the corresponding fit to the
2017 tagged Belle measurement [1], up to 2� di↵erences
occur, including in the values of |Vcb|. This indicates that
more precise measurements are needed to resolve tensions
between various |Vcb| determinations, and that the trun-
cation order of the BGL expansion of the form factors
has to be chosen with care, based on data.
We look forward to more precise experimental mea-

surements, more complete fit studies inside the experi-
mental analysis frameworks, as well as better understand-
ing of the composition of the inclusive semileptonic rate

Use the central values of the

BGL222 fit as a starting point 

to add fine structure

Create a “true” higher order 
Hypothesis of order BGL333

‘1-times’ ’10-times’

Has fine structure element the 
current data cannot resolveΔ

ℬ

cos θℓ

BGL222 BGL333
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Toy study to illustrate the possible bias
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tical to the BGL222 fit results of Fig. I. The 3rd order
terms {ã2, b̃2, c̃3} were chosen according to two di↵erent
scenarios: Either 1 or 10 times the size of the {ã1, b̃1, c̃2}
coe�cients in the BGL222 fit, as shown in Table III. We
call these the ‘1-times’ and ‘10-times’ scenarios, respec-
tively. Ensembles were constructed as follows. First, pre-
dictions for the 40 bins of the tagged measurement [1]
were produced. Ensembles of pseudo-data sets were then
generated using the full experimental covariance, assum-
ing Gaussian errors, and then each pseudo-data set was
fit according to the nested hypothesis test prescription.

The frequency with which particular BGLijk

parametrizations are selected are shown in Table IV, for
both the 1- and 10-times scenarios. For each selected fit
hypothesis, the recovered value, |Vcb|rec, and the asso-
ciated uncertainty, �, may then be used to construct a
pull, i.e., the normalized di↵erence (|Vcb|rec�|Vcb|true)/�,
where |Vcb|true is the ‘true’ value used to construct the
ensembles. If a fit or a procedure is unbiased, the
corresponding pull distribution should follow a standard
normal distribution (mean of zero, standard deviation
of unity). In Figure 3 the pull distributions for both the
1- and 10-times scenarios are shown and compared to
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2

ã2 2.6954 26.954

b̃2 �0.2040 �2.040

c̃3 0.5350 5.350
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toy experiments. The third order terms {ã2, b̃2, c̃3} are taken

either as 1 or 10 times the second order terms {ã1, b̃1, c̃2} in

the BGL222 fit shown in Fig. III.

that of the BGL122 parametrization. One sees that the
nested hypothesis test proposed in this paper selects fit
hypotheses that provide unbiased values for |Vcb| in both
scenarios. However, the BGL122 fit shows significant
biases. In the ensemble tests the BGL122 fits have mean
�2 values of 41.0 and 56.6, respectively (with 35 degrees
of freedom). For the 1-times scenario, this produces an
acceptable fit probability on average. Nonetheless, the
recovered value of |Vcb| is biased by about 1.3�.

VI. CONCLUSIONS

We studied the di↵erences of the determinations of
|Vcb| from exclusive semileptonic B ! D⇤`⌫ decays, de-
pending on the truncation order of the BGL parametriza-
tion of the form factors used to fit the measured dif-
ferential decay distributions. Since the 2018 untagged
Belle measurement [2] used a five-parameter BGL fit,
Refs. [14, 20] used a six-parameter fit, and Refs. [13, 22]
used an eight-parameter one, we explored di↵erences be-
tween the five, six, seven, and eight parameter fits.
We proposed using nested hypothesis tests to deter-

mine the optimal number of fit parameters. For the 2017
Belle analysis [1], six parameters are preferred. Including
additional fit parameters only improves �2 marginally.
Comparing the result of the BGL122 fit used in the 2018
untagged Belle analysis [2] to the corresponding fit to the
2017 tagged Belle measurement [1], up to 2� di↵erences
occur, including in the values of |Vcb|. This indicates that
more precise measurements are needed to resolve tensions
between various |Vcb| determinations, and that the trun-
cation order of the BGL expansion of the form factors
has to be chosen with care, based on data.
We look forward to more precise experimental mea-

surements, more complete fit studies inside the experi-
mental analysis frameworks, as well as better understand-
ing of the composition of the inclusive semileptonic rate
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FIG. 3. The pull constructed from a large ensemble of pseudo-experiments using 3rd order terms of the 1-times (left plot) and

10-times scenario (right plot) described in the text. The pull of the fits selected by the nested hypothesis prescription (black)

show no bias or under-coverage of uncertainties. Also shown in red is the pull from a BGL122 fit, showing a large bias on the

value of |Vcb|. Mean (µ) and standard deviation (�) from normal distributions fitted to the ensembles are also provided.

data sets. These were generated using the BGL333

parametrization, i.e., with nine coe�cients. The six lower
order coe�cients {ã0,1, b̃0,1, c̃1,2} were chosen to be iden-
tical to the BGL222 fit results of Fig. I. The 3rd order
terms {ã2, b̃2, c̃3} were chosen according to two di↵erent
scenarios: Either 1 or 10 times the size of the {ã1, b̃1, c̃2}
coe�cients in the BGL222 fit, as shown in Table III. We
call these the ‘1-times’ and ‘10-times’ scenarios, respec-
tively. Ensembles were constructed as follows. First, pre-
dictions for the 40 bins of the tagged measurement [1]
were produced. Ensembles of pseudo-data sets were then
generated using the full experimental covariance, assum-
ing Gaussian errors, and then each pseudo-data set was
fit according to the nested hypothesis test prescription.

The frequency with which particular BGLijk

parametrizations are selected are shown in Table IV, for
both the 1- and 10-times scenarios. For each selected fit
hypothesis, the recovered value, |Vcb|rec, and the asso-
ciated uncertainty, �, may then be used to construct a
pull, i.e., the normalized di↵erence (|Vcb|rec�|Vcb|true)/�,
where |Vcb|true is the ‘true’ value used to construct the
ensembles. If a fit or a procedure is unbiased, the
corresponding pull distribution should follow a standard
normal distribution (mean of zero, standard deviation
of unity). In Figure 3 the pull distributions for both the
1- and 10-times scenarios are shown and compared to

Parameter Value ⇥ 10
2

Value ⇥ 10
2

ã2 2.6954 26.954

b̃2 �0.2040 �2.040

c̃3 0.5350 5.350

TABLE III. Fit coe�cients used to construct the ensembles of

toy experiments. The third order terms {ã2, b̃2, c̃3} are taken

either as 1 or 10 times the second order terms {ã1, b̃1, c̃2} in

the BGL222 fit shown in Fig. III.

that of the BGL122 parametrization. One sees that the
nested hypothesis test proposed in this paper selects fit
hypotheses that provide unbiased values for |Vcb| in both
scenarios. However, the BGL122 fit shows significant
biases. In the ensemble tests the BGL122 fits have mean
�2 values of 41.0 and 56.6, respectively (with 35 degrees
of freedom). For the 1-times scenario, this produces an
acceptable fit probability on average. Nonetheless, the
recovered value of |Vcb| is biased by about 1.3�.

VI. CONCLUSIONS

We studied the di↵erences of the determinations of
|Vcb| from exclusive semileptonic B ! D⇤`⌫ decays, de-
pending on the truncation order of the BGL parametriza-
tion of the form factors used to fit the measured dif-
ferential decay distributions. Since the 2018 untagged
Belle measurement [2] used a five-parameter BGL fit,
Refs. [14, 20] used a six-parameter fit, and Refs. [13, 22]
used an eight-parameter one, we explored di↵erences be-
tween the five, six, seven, and eight parameter fits.
We proposed using nested hypothesis tests to deter-

mine the optimal number of fit parameters. For the 2017
Belle analysis [1], six parameters are preferred. Including
additional fit parameters only improves �2 marginally.
Comparing the result of the BGL122 fit used in the 2018
untagged Belle analysis [2] to the corresponding fit to the
2017 tagged Belle measurement [1], up to 2� di↵erences
occur, including in the values of |Vcb|. This indicates that
more precise measurements are needed to resolve tensions
between various |Vcb| determinations, and that the trun-
cation order of the BGL expansion of the form factors
has to be chosen with care, based on data.
We look forward to more precise experimental mea-

surements, more complete fit studies inside the experi-
mental analysis frameworks, as well as better understand-
ing of the composition of the inclusive semileptonic rate

BGL122BGL122

Nested 
Hypothesis 

Test
Nested 

Hypothesis 
Test

Mean and Variance

of Pulls
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BGL122 BGL212 BGL221 BGL222 BGL223 BGL232 BGL322 BGL233 BGL323 BGL332 BGL333

1-times 6% 0% 37% 27% 6% 6% 11% 0% 2% 4% 0.4%

10-times 0% 0% 8% 38% 14% 8% 16% 3% 4% 8% 1%

TABLE IV. The frequency of the selected hypotheses for ensembles created with the two scenarios for the higher order terms,

as estimated with an ensemble size of 250 pseudo-data sets.

as a sum of exclusive channels [33, 34]. Improved lattice
QCD results, including finalizing the form factor calcula-
tions in the full w range [31, 32] are also expected to be
forthcoming. These should all contribute to a better un-
derstanding of the determinations of |Vcb| from exclusive
and inclusive semileptonic decays, which is important for
CKM fits, new physics sensitivity, ✏K , and rare decays.
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FIG. 3. The pull constructed from a large ensemble of pseudo-experiments using 3rd order terms of the 1-times (left plot) and

10-times scenario (right plot) described in the text. The pull of the fits selected by the nested hypothesis prescription (black)

show no bias or under-coverage of uncertainties. Also shown in red is the pull from a BGL122 fit, showing a large bias on the

value of |Vcb|. Mean (µ) and standard deviation (�) from normal distributions fitted to the ensembles are also provided.

data sets. These were generated using the BGL333

parametrization, i.e., with nine coe�cients. The six lower
order coe�cients {ã0,1, b̃0,1, c̃1,2} were chosen to be iden-
tical to the BGL222 fit results of Fig. I. The 3rd order
terms {ã2, b̃2, c̃3} were chosen according to two di↵erent
scenarios: Either 1 or 10 times the size of the {ã1, b̃1, c̃2}
coe�cients in the BGL222 fit, as shown in Table III. We
call these the ‘1-times’ and ‘10-times’ scenarios, respec-
tively. Ensembles were constructed as follows. First, pre-
dictions for the 40 bins of the tagged measurement [1]
were produced. Ensembles of pseudo-data sets were then
generated using the full experimental covariance, assum-
ing Gaussian errors, and then each pseudo-data set was
fit according to the nested hypothesis test prescription.

The frequency with which particular BGLijk

parametrizations are selected are shown in Table IV, for
both the 1- and 10-times scenarios. For each selected fit
hypothesis, the recovered value, |Vcb|rec, and the asso-
ciated uncertainty, �, may then be used to construct a
pull, i.e., the normalized di↵erence (|Vcb|rec�|Vcb|true)/�,
where |Vcb|true is the ‘true’ value used to construct the
ensembles. If a fit or a procedure is unbiased, the
corresponding pull distribution should follow a standard
normal distribution (mean of zero, standard deviation
of unity). In Figure 3 the pull distributions for both the
1- and 10-times scenarios are shown and compared to

Parameter Value ⇥ 10
2

Value ⇥ 10
2

ã2 2.6954 26.954

b̃2 �0.2040 �2.040

c̃3 0.5350 5.350

TABLE III. Fit coe�cients used to construct the ensembles of

toy experiments. The third order terms {ã2, b̃2, c̃3} are taken

either as 1 or 10 times the second order terms {ã1, b̃1, c̃2} in

the BGL222 fit shown in Fig. III.

that of the BGL122 parametrization. One sees that the
nested hypothesis test proposed in this paper selects fit
hypotheses that provide unbiased values for |Vcb| in both
scenarios. However, the BGL122 fit shows significant
biases. In the ensemble tests the BGL122 fits have mean
�2 values of 41.0 and 56.6, respectively (with 35 degrees
of freedom). For the 1-times scenario, this produces an
acceptable fit probability on average. Nonetheless, the
recovered value of |Vcb| is biased by about 1.3�.

VI. CONCLUSIONS

We studied the di↵erences of the determinations of
|Vcb| from exclusive semileptonic B ! D⇤`⌫ decays, de-
pending on the truncation order of the BGL parametriza-
tion of the form factors used to fit the measured dif-
ferential decay distributions. Since the 2018 untagged
Belle measurement [2] used a five-parameter BGL fit,
Refs. [14, 20] used a six-parameter fit, and Refs. [13, 22]
used an eight-parameter one, we explored di↵erences be-
tween the five, six, seven, and eight parameter fits.
We proposed using nested hypothesis tests to deter-

mine the optimal number of fit parameters. For the 2017
Belle analysis [1], six parameters are preferred. Including
additional fit parameters only improves �2 marginally.
Comparing the result of the BGL122 fit used in the 2018
untagged Belle analysis [2] to the corresponding fit to the
2017 tagged Belle measurement [1], up to 2� di↵erences
occur, including in the values of |Vcb|. This indicates that
more precise measurements are needed to resolve tensions
between various |Vcb| determinations, and that the trun-
cation order of the BGL expansion of the form factors
has to be chosen with care, based on data.
We look forward to more precise experimental mea-

surements, more complete fit studies inside the experi-
mental analysis frameworks, as well as better understand-
ing of the composition of the inclusive semileptonic rate

BGL122BGL122

Nested 
Hypothesis 

Test
Nested 

Hypothesis 
Test

Mean and Variance

of Pulls
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BGL122 BGL212 BGL221 BGL222 BGL223 BGL232 BGL322 BGL233 BGL323 BGL332 BGL333

1-times 6% 0% 37% 27% 6% 6% 11% 0% 2% 4% 0.4%

10-times 0% 0% 8% 38% 14% 8% 16% 3% 4% 8% 1%

TABLE IV. The frequency of the selected hypotheses for ensembles created with the two scenarios for the higher order terms,

as estimated with an ensemble size of 250 pseudo-data sets.

as a sum of exclusive channels [33, 34]. Improved lattice
QCD results, including finalizing the form factor calcula-
tions in the full w range [31, 32] are also expected to be
forthcoming. These should all contribute to a better un-
derstanding of the determinations of |Vcb| from exclusive
and inclusive semileptonic decays, which is important for
CKM fits, new physics sensitivity, ✏K , and rare decays.
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Measurement provides migration matrices and acceptance, so one can unfold 
the measured signal yields via

!17

Unfolding the Untagged fit result

Ntrue
j → Ntrue

j ∏
i

(1 + Θiεij)χ2 → χ2 + ∑
i

Θ2
i

Gaussian Constraint on

Systematic Nuisance Parameter

relative Error vector of a 
given source i

Incorporating Systematic Uncertainties: σstat ∼ σsyst

χ2 = (Ntrue ϵ M − Nreco) C−1
stat (Ntrue ϵ M − Nreco)

statistical Covariance recorded Signal eventsAcceptance  / Efficiency matrix

Migration matrix“True” Yield

See also Discussion by Gambino, 
Jung, Schacht in


[arXiv:1905.08209, PLB] about this

→ Measurement only provides relative errors, thus one

has to be a bit careful here (d’Agostini bias)
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Unfolded result
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For some sources it would

be necessary to know the 

correlation between bins (as 
they have a stat. component)

Have to make the assumption, 
that neighbouring bins are fully 

correlated
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Preliminary New Untagged + Tagged Result for |Vcb|

1

Tagged Belle Measurement:

nc

na
1 2 3 1 2 3 1 2 3

1
33.2 31.6 31.2 33.0 29.1 28.9 30.4 29.1 28.9

38.7± 1.1 38.6± 1.1 38.7± 1.1 39.1± 1.6 40.8± 1.7 40.8± 1.7 40.8± 1.9 40.7± 1.9 40.7± 1.9

2
32.9 31.3 31.1 32.7 27.7 27.7 29.2 27.7 27.7

38.9± 1.2 38.8± 1.2 38.9± 1.2 39.6± 1.7 41.7± 1.9 41.7± 1.9 41.9± 2.1 41.8± 2.1 41.8± 2.1

3
31.7 31.3 31.0 29.1 27.7 27.7 29.2 27.6 23.2

39.1± 1.2 38.7± 1.4 38.7± 1.3 42.0± 2.1 41.9± 2.1 41.8± 2.1 41.9± 1.9 41.8± 2.0 41.5± 2.1

nb = 1 nb = 2 nb = 3

Untagged Belle Measurement:

nc

na
1 2 3 1 2 3 1 2 3

1
55.5 55.2 49.9 52.3 49.3 45.5 46.3 46.3 45.5

40.5± 0.7 40.6± 0.7 40.4± 0.7 40.1± 0.7 39.1± 1.0 39.0± 1.0 38.4± 1.0 38.4± 1.0 39.0± 0.9

2
52.5 50.4 49.8 46.0 43.1 43.0 43.4 43.6 41.8

40.2± 0.7 40.4± 0.7 40.4± 0.7 39.5± 0.8 37.5± 1.5 37.3± 1.7 38.4± 1.0 38.4± 0.9 37.5± 1.4

3
50.9 50.3 44.3 43.4 42.2 41.5 41.5 42.1 41.6

40.4± 0.7 40.3± 0.7 40.3± 0.7 38.4± 1.1 37.4± 1.2 38.3± 1.5 37.9± 1.1 37.5± 1.2 38.2± 1.4

nb = 1 nb = 2 nb = 3

Untagged + Tagged Belle Measurement:

nc

na
1 2 3 1 2 3 1 2 3

1
99.4 99.1 95.0 98.1 97.8 94.4 97.1 97.0 90.5

40.0± 0.7 40.1± 0.7 40.0± 0.7 39.8± 0.7 39.5± 0.9 39.5± 0.9 39.1± 0.9 39.1± 0.9 40.4± 1.0

2
95.7 93.4 93.4 91.8 91.8 91.7 91.7 91.6 85.7

39.8± 0.7 39.9± 0.7 39.9± 0.7 39.2± 0.7 39.1± 1.0 39.0± 1.0 39.0± 0.9 39.0± 1.0 39.7± 1.1

3
93.8 93.4 93.3 91.7 91.5 90.6 91.7 90.0 90.8

39.9± 0.7 39.8± 0.7 39.8± 0.8 39.0± 1.0 39.0± 1.1 38.4± 0.8 39.0± 0.8 38.4± 1.0 38.4± 1.1

nb = 1 nb = 2 nb = 3

BGL111 → BGL112 → BGL122 stationary

BGL113 → BGL123

BGL212 → BGL222

BGL122 selected

Vcb = (39.2 ± 0.7) × 10−3

Preliminary
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• Nested hypothesis tests can determine the necessary truncation order 
in an unbiased way

‣ Good alternative to theory motivated priors 
‣ Avoids overconstraining higher order coefficients in BGL expansion


‣ These in turn might violate unitarity, but a priori not a conceptual problem 
(nature is unitary, i.e. a prior might introduce its own bias)


‣ Tested “unbiasedness” of procedure via ensembles of pseudo-
experiments (toys)

!20

Conclusions

Vcb = (39.2 ± 0.7) × 10−3

Preliminary average of

tagged & untagged meas.

• Preliminary combination of untagged and tagged measurements:

Inquired about correct 
covariance for Lepton ID 
systematics; stay tuned

Plan to updated 
R(D/D*) predictions 
[arXiv:1703.05330]
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Backup
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Consistency with Heavy Quark symmetry

5
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FIG. 2. The form factor F(w) (top), R1(w) (middle) and R2(w) (bottom) for the six fits described in the text.

parameters, at order O(⇤QCD/mc,b, ↵s) are [20],

R1(1) = 1.34� 0.12⌘(1) + . . . ,

R0
1(1) = �0.15 + 0.06 ⌘(1)� 0.12 ⌘0(1) + . . . , (10)

where ⌘(w) is a ratio of a subleading and the leading
Isgur-Wise function. With ⌘(1) and ⌘0(1) of order unity,
R1(1) cannot be much below 1, and |R0

1(1)| cannot be
large, without a breakdown of heavy quark symmetry.
Preliminary lattice QCD calculations [31, 32] also do not
indicate O(1) violations of heavy quark symmetry. Fig. 2
shows that the BGL122 fit exhibits better agreement with
heavy quark symmetry expectations for R1(w). How-

ever, this likely arises because R1(w) / (w + 1) g/f , so
setting a1 = 0 constrains the shape of the numerator.
By contrast, the BGL212, BGL221, and BGL222 fits pre-
fer a1 6= 0, and yield R1(w) in some tension with heavy
quark symmetry and lattice QCD.

V. TOY STUDIES

To validate the prescription outlined above, and to
demonstrate that it yields an unbiased value of |Vcb|, we
carried out a toy MC study using ensembles of pseudo-

2

II. FORMALISM AND NOTATIONS

The vector and axial-vector B ! D⇤ form factors are
defined as

hD⇤
| c̄�µb |Bi = i

p
mBmD⇤ hV "µ⌫↵� ✏⇤⌫v

0
↵v� ,

hD⇤
| c̄�µ�5b |Bi =

p
mBmD⇤

⇥
hA1(w + 1)✏⇤µ (3)

� hA2(✏
⇤
· v)vµ � hA3(✏

⇤
· v)v0µ

⇤
,

where v (v0) is the four-velocity of the B (D⇤). The form
factors hV,A1,2,3 depend on w = v · v0 = (m2

B + m2
D⇤ �

q2)/(2mBmD⇤). In the heavy quark limit, hA1 = hA3 =
hV = ⇠ and hA2 = 0, where ⇠ is the Isgur-Wise func-
tion [3, 4]. Each of these form factors can be expanded
in powers of ⇤QCD/mc,b and ↵s.

In the massless lepton limit (i.e., ` = e or µ), the dif-
ferential B ! D⇤`⌫̄ rate is given by

d�

dw
=

G2
F |Vcb|

2 ⌘2ew m5
B

48⇡3

p
w2 � 1 (w + 1)2 r3(1� r)2

⇥


1 +

4w

w + 1

1� 2wr + r2

(1� r)2

�
[F(w)]2 , (4)

where r = mD⇤/mB , and F(w) can be written in terms of
hA1(w) and the two form factor ratios (see, e.g., Ref. [27])

R1(w) =
hV

hA1

, R2(w) =
hA3 + r hA2

hA1

. (5)

All measurable information is then contained in the three
functions F(w) and R1,2(w). Throughout this paper,
F(1) = 0.906 [28] and ⌘ew = 1.0066 [29] are used to con-
vert fit results for |Vcb| F(1) ⌘ew to values of |Vcb|. In the
heavy quark limit R1,2(w) = 1 +O(⇤QCD/mc,b, ↵s) and
F(w) = ⇠(w). Thus, R1,2(w)� 1 parametrize deviations
from the heavy quark limit.

The BGL framework is defined by expanding three
form factors g, f , and F1, which are linear combina-
tions of those defined in Eq. (3), in power series of the
form 1/[Pi(z)�i(z)] ⇥

P
ainz

n, where i = g, f , F1 (see,
e.g., Ref. [12], and note that F1 6= F). Here z = z(w)
is a conformal parameter that maps the physical region
1 < w < 1.5 onto 0 < z < 0.056, and Pi(z) and �i(z)
are known functions [14]. There are two notations in the
literature for the coe�cients of these power series, which
map onto each other via

�
an, bn, cn

 
[14]  !

�
agn, a

f
n, a

F1
n

 
[13] . (6)

In the remainder of this paper we adopt the former no-
tation, so that an, bn and cn are the coe�cients of g, f ,
and F1, respectively. (The convention for the sign of g,
and thus the an, in Ref. [14] is opposite to that used in
Refs. [13, 22].) Note that c0 is fixed by b0 [12, 14], and
the fits are performed for the rescaled parameters

�
ãn, b̃n, c̃n

 
= ⌘ew |Vcb|

�
an, bn, cn

 
, (7)

and |Vcb| is determined by |b̃0|.

To study and distinguish expansions truncated at dif-
ferent orders in z, we denote by BGLnanbnc a BGL fit
with parameters,

{a0,..., na�1, b0,..., nb�1, c1,..., nc} . (8)

The total number of fit parameters is N = na + nb +
nc. The BGL parametrization used in Refs. [14, 20], is
BGL222, while that used in Refs. [13, 22] is BGL332.

III. NESTED HYPOTHESIS TESTS: FIXING
THE OPTIMAL NUMBER OF COEFFICIENTS

Our aim is to construct a prescription to determine
the optimal number of parameters to fit a given data set.
This can be achieved by use of a nested hypothesis test:
a test of an N -parameter fit hypothesis versus a fit using
one additional parameter (the alternative hypothesis).
Such a hypothesis test requires an appropriate statis-

tical measure or test statistic. A suitable choice is the
di↵erence in �2,

��2 = �2
N � �2

N+1 . (9)

The fit with one additional parameter — the (N + 1)-
parameter fit — has one fewer degree of freedom (number
of bins minus the number of parameters). In the large
number of degrees of freedom limit, ��2 is distributed
as a �2 with a single degree of freedom [30]. One may
reject or accept the alternative hypothesis by choosing a
decision boundary. If, for instance, we choose ��2 = 1
as the decision boundary, we would reject the (N + 1)-
parameter hypothesis in favor of theN -parameter fit 68%
of the time, if the N parameter hypothesis is true.

We seek a prescription to incrementally apply this
nested hypothesis test, starting from a suitably small ini-
tial number of parameters (to avoid possible overfitting),
until we reach the simplest (smallest N) fit containing
the initial parameters, that is preferred over all hypothe-
ses that nest it or are nested by it. For a set of BGL fits,
we thus propose the following prescription starting from
a suitable low-N fit BGLnanbnc :

(i) Carry out fits with one parameter added (a “de-
scendant” fit) or, when permitted, removed (a “par-
ent” fit); i.e., for BGL(na±1)nbnc

, BGLna(nb±1)nc
,

BGLnanb(nc±1).

(ii) For each descendant (parent) hypothesis, accept it
over BGLnanbnc if ��2 is above (below) the deci-
sion boundary value.

(iii) Repeat (i) and (ii) recursively, until a “stationary”
fit is reached, that is preferred over its parents and
descendants.

(iv) If there are multiple stationary fits, choose the one
with the smallest N , then the smallest �2.

The optimal truncation order obtained this way depends
on the precision of the available experimental data. Our


