$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & \hline{V_{cb}} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Nested hypothesis tests and $|V_{cb}|$

with Z. Ligeti, D. Robinson, M. Papucci [arXiv:1902.09553, accepted by PRD] [arXiv:1708.07134, PRD]

Decay rate described by 3 form factors

(in zero lepton mass limit)

$$\langle D^*(\varepsilon, p') | \bar{c} \gamma^{\mu} b | \bar{B}(p) \rangle = i \mathbf{g} \epsilon^{\mu\nu\alpha\beta} \varepsilon_{\nu}^* p_{\alpha} p_{\beta}',$$

$$\langle D^*(\varepsilon, p') | \bar{c} \gamma^{\mu} \gamma^5 b | \bar{B}(p) \rangle = \mathbf{f} \varepsilon^{*\mu} + (\varepsilon^* \cdot p) [\mathbf{a}_+ (p + p')^{\mu} + a_- (p - p')^{\mu}],$$

BGL method: Expand form factors using dispersion relations & unitarity

$$g(z) = \frac{1}{P_g(z)\phi_g(z)} \sum_{n=0}^{N} a_n z^n, \qquad f(z) = \frac{1}{P_f(z)\phi_f(z)} \sum_{n=0}^{N} b_n z^n, \qquad F_1(z) = \frac{1}{P_{\mathcal{F}_1}(z)\phi_{\mathcal{F}_1}(z)} \sum_{n=0}^{N} c_n z^n,$$
Combination of f and a_+

Conformal variable z:

$$z = \frac{\sqrt{w+1} - \sqrt{2a}}{\sqrt{w+1} + \sqrt{2a}}$$

QCD encoded in coefficients:

$$\{a_n, b_n, c_n\}$$

$$c_0 = \mathbf{constants} \times b_0$$

The Problem at a glance

At what order should you truncate the series?

$$g(z) = \frac{1}{P_g(z)\phi_g(z)} \sum_{n=0}^{N} a_n z^n, \qquad f(z) = \frac{1}{P_f(z)\phi_f(z)} \sum_{n=0}^{N} b_n z^n, \qquad \mathcal{F}_1(z) = \frac{1}{P_{\mathcal{F}_1}(z)\phi_{\mathcal{F}_1}(z)} \sum_{n=0}^{N} c_n z^n,$$

- Truncate too soon:
 - ► Model dependence in extracted result for |V_{cb}|?
- Truncate too late:
 - ► Unnecessarily increase variance on |V_{cb}|?

What is the **ideal** truncation order?

Can get intertwined, as three form factors are involved

Careful: [arXiv:1905.08209, PLB] introduced an identical notation, but with another meaning!

Our Notation

$$\begin{cases} a_{0,\dots,n_a-1},b_{0,\dots,n_b-1},c_{1,\dots,n_c} \end{cases}$$

$$\mathbf{BGL}_{n_a n_b n_c}$$

Different approaches on the market

This work

[arXiv:1902.09553, accepted by PRD]

Use a **nested hypothesis test** to determine optimal truncation order

Test statistics & Decision boundary

$$\Delta \chi^2 = \chi_N^2 - \chi_{N+1}^2 \qquad \Delta \chi^2 > 1$$

Distributed like a χ^2 -distribution with 1 dof (Wilk's theorem)

Gambino, Jung, Schacht

[arXiv:1905.08209, PLB]

Constrain contributions from higher order coefficients using unitarity bounds

$$\sum_{n=0}^{N} |a_n|^2 \le 1 \qquad \sum_{n=0}^{N} \left(|b_n|^2 + |c_n|^2 \right) \le 1$$

Different approaches on the market

This work

[arXiv:1902.09553, accepted by PRD]

Use a **nested hypothesis test** to determine optimal truncation order

Test statistics & Decision boundary

$$\Delta \chi^2 = \chi_N^2 - \chi_{N+1}^2 \qquad \Delta \chi^2 > 1$$

Distributed like a χ^2 -distribution with 1 dof (Wilk's theorem)

Gambino, Jung, Schacht

[arXiv:1905.08209, PLB]

Constrain contributions from higher order coefficients using unitarity bounds

$$\sum_{n=0}^{N} |a_n|^2 \le 1 \qquad \sum_{n=0}^{N} \left(|b_n|^2 + |c_n|^2 \right) \le 1$$

- 1 Carry out nested fits with one parameter added
- 2 Accept descendant over parent fit, if $\Delta \chi^2 > 1$
- Repeat 1 and 2 until you find **stationary** points
- If multiple **stationary** points remain, choose the one with smallest N, then smallest χ^2

- 1 Carry out nested fits with one parameter added
- Accept descendant over parent fit, if $\Delta \chi^2 > 1$
- Repeat 1 and 2 until you find **stationary** points
- If multiple **stationary** points remain, choose the one with smallest N, then smallest χ^2

- 1 Carry out nested fits with one parameter added
- Accept descendant over parent fit, if $\Delta \chi^2 > 1$
- Repeat 1 and 2 until you find **stationary** points
- If multiple **stationary** points remain, choose the one with smallest N, then smallest γ^2

- 1 Carry out nested fits with one parameter added
- Accept descendant over parent fit, if $\Delta \chi^2 > 1$
- Repeat 1 and 2 until you find **stationary** points
- If multiple **stationary** points remain, choose the one with smallest N, then smallest χ^2

Applied to Belle Tagged result

4 x 1D projections of kinematic variables + correlations

Unfolded for detector effects and migrations

Tagged Belle Measurement:

n_a	1	2	3	1	2	3	1	2	3	
1	33.2 $ 38.7 \pm 1.1$	$31.6 \uparrow 38.6 \pm 1.1$	31.2 38.7 ± 1.1	33.0 39.1 ± 1.6	29.1 40.8 ± 1.7	28.9 40.8 ± 1.7	30.4 40.8 ± 1.9	29.1 40.7 ± 1.9	28.9 40.7 ± 1.9	
2	32.9 38.9 ± 1.2	31.3 38.8 ± 1.2	31.1 38.9 ± 1.2	32.7 39.6 ± 1.7	27.7 41.7 ± 1.9	27.7 41.7 ± 1.9	29.2 41.9 ± 2.1	27.7 41.8 ± 2.1	27.7 41.8 ± 2.1	
3	31.7 39.1 ± 1.2	31.3 38.7 ± 1.4	31.0 38.7 ± 1.3	29.1 42.0 ± 2.1	27.7 41.9 ± 2.1	27.7 41.8 ± 2.1	29.2 41.9 ± 1.9	27.6 41.8 ± 2.0	23.2 41.5 ± 2.1	
		$n_b = 1$		$n_b = 2$			$n_b = 3$			

$$\mathbf{BGL}_{111} \to \mathbf{BGL}_{211} \to \mathbf{BGL}_{221} \to \mathbf{BGL}_{222}$$

stationary

Toy study to illustrate the possible bias

Use the central values of the **BGL₂₂₂ fit** as a starting point to add **fine structure**

Parameter	Value $\times 10^2$	Value $\times 10^2$
\tilde{a}_2	2.6954	26.954
$ ilde{b}_2$	-0.2040	-2.040
$ ilde{c}_3$	0.5350	5.350

'1-times'

'10-times'

Create a "true" higher order Hypothesis of order BGL₃₃₃

Has fine structure element the current data cannot resolve

Toy study to illustrate the possible bias

Use the central values of the BGL₂₂₂ fit as a starting point to add fine structure

'1-times' '10-times'

Parameter	Value $\times 10^2$	Value $\times 10^2$
\tilde{a}_2	2.6954	26.954
\widetilde{b}_2	-0.2040	-2.040
\tilde{c}_3	0.5350	5.350

Toy Test

Produce **ensemble** of toy measurements using **untagged covariance** & **BGL**₃₃₃ central values

Each toy is fitted to build the descendant tree and carry out a

nested hypo. test to select its preferred BGLn_an_bn_c

Create a "true" higher order Hypothesis of order BGL₃₃₃

Has fine structure element the current data cannot resolve

As calculated from selected BGLn_an_bn_c fit of each toy

$$Pull = \frac{\left| V_{cb} \right|_{true} - \left| V_{cb} \right|_{toy}}{\Delta \left| V_{cb} \right|_{toy}}$$

If methodology unbiased, should follow a standard normal distribution (mean 0, width 1)

Pull Results

→ Procedure produces unbiased |V_{cb}| values, just picking a hypothesis (BGL₁₂₂) does not

Relative Free	quency of	selected	Hypothesis:
---------------	-----------	----------	-------------

	BGL_{122}	BGL_{212}	BGL_{221}	BGL_{222}	BGL_{223}	BGL_{232}	BGL_{322}	BGL_{233}	BGL ₃₂₃	BGL ₃₃₂	BGL ₃₃₃
1-times	6%	0%	37%	27%	6%	6%	11%	0%	2%	4%	0.4%
10-times	0%	0%	8%	38%	14%	8%	16%	3%	4%	8%	1%

Pull Results

→ Procedure produces **unbiased** |V_{cb}| values, just picking a hypothesis (BGL₁₂₂) does not

Relative Frequency of selected Hypo	thesis:
-------------------------------------	---------

	BGL_{122}	BGL_{212}	BGL_{221}	BGL_{222}	BGL_{223}	BGL_{232}	BGL_{322}	BGL_{233}	BGL_{323}	BGL_{332}	$\overline{\mathrm{BGL}_{333}}$
1-times	6%	0%	37%	27%	6%	6%	11%	0%	2%	4%	0.4%
10-times	0%	0%	8%	38%	14%	8%	16%	3%	4%	8%	1%

Throwing the New Untagged Belle result into the mix

Unfolding the Untagged fit result

Measurement provides migration matrices and acceptance, so one can unfold the measured signal yields via

$$\chi^{2} = (\mathbf{N}_{\text{true}} e \mathbf{M} - \mathbf{N}_{\text{reco}}) C_{\text{stat}}^{-1} (\mathbf{N}_{\text{true}} e \mathbf{M} - \mathbf{N}_{\text{reco}})$$

$$\uparrow$$
Acceptance / Efficiency matrix statistical Covariance recorded Signal events

Incorporating Systematic Uncertainties: $\sigma_{stat} \sim \sigma_{syst}$ —

See also Discussion by Gambino, Jung, Schacht in [arXiv:1905.08209, PLB] about this

Gaussian Constraint on

Systematic Nuisance Parameter

→ Measurement only provides relative errors, thus one has to be a bit careful here (d'Agostini bias)

$$\chi^2 \to \chi^2 + \sum_i \Theta_i^2$$
 $\mathbf{N}_{\text{true}}^j \to \mathbf{N}_{\text{true}}^j$ $\mathbf{\prod}_i (1 + \Theta_i \varepsilon_{ij})$ relative Error vector of a given source i

Unfolded result

For some sources it would be necessary to know the correlation between bins (as they have a stat. component)

Have to make the assumption, that neighbouring bins are fully correlated

Preliminary New Untagged + Tagged Result for Vcb

Untagged +	- Tagged	Belle	Measurement:
Unidescu	Taggoa	Dono	MICOSOLICIICII.

n_a	1	2	3	1	2	3	1	2	3
1	99.4 40.0 ± 0.7	99.1 40.1 ± 0.7	95.0 40.0 ± 0.7	98.1 39.8 ± 0.7	97.8 39.5 ± 0.9	94.4 39.5 ± 0.9	97.1 39.1 ± 0.9	97.0 39.1 ± 0.9	90.5 40.4 ± 1.0
2	95.7 39.8 ± 0.7	93.4 39.9 ± 0.7	93.4 39.9 ± 0.7	91.8 39.2 ± 0.7	91.8 39.1 ± 1.0	91.7 39.0 ± 1.0	91.7 39.0 ± 0.9	91.6 39.0 ± 1.0	85.7 39.7 ± 1.1
3	93.8 39.9 ± 0.7	93.4 39.8 ± 0.7	93.3 39.8 ± 0.8	91.7 39.0 ± 1.0	91.5 39.0 ± 1.1	90.6 38.4 ± 0.8	91.7 39.0 ± 0.8	90.0 38.4 ± 1.0	90.8 38.4 ± 1.1
	$n_b = 1$			$n_b = 2$			$n_b = 3$		

Conclusions

- Nested hypothesis tests can determine the necessary truncation order in an unbiased way
 - Good alternative to theory motivated priors
 - Avoids overconstraining higher order coefficients in BGL expansion
 - ► These in turn might violate unitarity, but a priori not a conceptual problem (nature is unitary, i.e. a prior might introduce its own bias)
 - Tested "unbiasedness" of procedure via ensembles of pseudoexperiments (toys)
- Preliminary combination of untagged and tagged measurements:

Preliminary average of tagged & untagged meas.

$$\left| V_{cb} \right| = (39.2 \pm 0.7) \times 10^{-3}$$

Inquired about correct covariance for Lepton ID systematics; stay tuned

Plan to updated

→ R(D/D*) predictions
[arXiv:1703.05330]

Backup

Consistency with Heavy Quark symmetry

