Wojciech Wiślicki

EPS - HEP 2019 Conference
Ghent 11-17 ${ }^{\text {th }}$ July, 2019

CPT as a fundamental symmetry of Nature

Basic theorems and experimental facts, 1

Invariance under CPT: strongly believed to be strict due to general theorems and naturalness of their premise

CPT theorem and its various mutations, 1951-57: Schwinger, Lüders, Jost, Pauli, Bell, Zumino

Assumptions:

- Hermiticity of H
- unitary evolution
- locality: fields commute (bosonic) or anticommute (fermionic) at spacelike separations
- finite vacuum expectations of field products
- Lorentz invariance

Imply CPT-invariance
$[C P T, H]=0$

CPT as a fundamental symmetry of Nature

Basic theorems and experimental facts, 2

Some phenomenological consequences of CPT invariance

- particles and antiparticles have the same masses
- particles and antiparticles have the same lifetimes (decay rates)
- CPT-coupled decay channels have the same widths (decay rates, lifetimes)
- ..

Many experimental tests of CPT;
most impressive experimental constraint
$\left|m_{K^{0}}-m_{\bar{K}^{0}}\right|<4 \times 10^{-19} \mathrm{GeV}$ at $95 \% \mathrm{cl}$., world data, main contribution by CPLEAR at CERN

CPT as a fundamental symmetry of Nature

Basic theorems and experimental facts, 3

- Theorem by Greenberg, 2002 (Anti-CPT theorem) O. Greenberg, Phys.Rev.Lett. 89 (2002)231602-1

CPT violation necessarily entails violation of Lorentz invariance (interacting theory)

- However, examples are given of non-local Lagrangian breaking CPT and still Lorentz-invariant M. Chaichian et al., Phys.Lett. B699 (2011) 177
- Standard-model extension by CPT violating term V.A. Kostelecky, many papers starting from 1990's
- Lots of subtleties but clear hint for phenomenology: CPT invariance probes Lorentz invariance

CPT non-invariance and T-irreversibility

Dissipation and gravity enter the game
R.M. Wald, PR D21 (1980) 2742
S.W. Hawking, Commun. Math. Phys. 87 (1982) 395

- No fundamental arrow of time in its own right but only with a choice of matter vs. antimatter
- In presence of fundamental quantum-gravity-induced decoherence, CPT operator is no longer well defined: scattering operator cannot map pure in-states into pure out-states, and vice versa, due to destruction of information in presence of micro black holes
- Analog to dissipative processes but here irreversibility is conected to CPT
- Dissipative Kossakowski-Lindbladt dynamics parametrization 1980's and 90's (Ellis, Hagelin, Nanopoulos, Srednicki, Huet, Peskin, Benatti, Floreanini), spin-statistics aspects and ω-model (Bernabeu), specific string-inspired space-time background model (Mavromatos, Sarkar, many papers)

Concept of minimal energy- and length scale leads to non-commutative geometry, by analogy to uncertainty relation

$$
\left[x^{\mu}, x^{v}\right]=i \theta^{\mu v}
$$

Motivated in-depth in string theories
Developed to deformed geometry generated by к-deformed Poincaré algebra (generators of boosts, momenta and rotations) and defined by commutation relations

$$
\left[t, x^{j}\right]=i x^{j} / \kappa ; \quad\left[t, k^{j}\right]=-i k^{j} / \kappa ; \quad \text { etc. }
$$

к naturally expected to be $m_{\text {Planck }}$
J.Kowalski-Glikman, S.Nowak, Class. Quant. Grav. 20 (2003) 4799

Planck-scale deformations of discrete symmetries

simple-minded thoughts

Normal, i.e. undeformed CPT

$$
\begin{aligned}
C P T: p_{0} & \rightarrow p_{0} \\
C P T: \vec{p} & \rightarrow \vec{p}
\end{aligned}
$$

Naively, try to deform CPT_{κ} expanding to linear terms in $1 / \kappa$

$$
\begin{aligned}
C P T_{\mathrm{\kappa}}: p_{0} & \rightarrow p_{0}-\frac{\vec{p}^{2}}{\kappa}+\mathcal{O}\left(\frac{1}{\kappa^{2}}\right) \\
C P T_{\mathrm{\kappa}}: \vec{p} & \rightarrow \vec{p}-\frac{p_{0} \vec{p}}{\kappa}+\mathcal{O}\left(\frac{1}{\mathrm{~K}^{2}}\right)
\end{aligned}
$$

And always $C P T_{\kappa}: q \rightarrow \bar{q}$

Effect of $C P T_{\kappa}$ to be derived by generalizing к-Poincaré to Hopf algebras

In simpler terms, sufficient to require preservation of mass-shell relation under $\Theta_{\mathrm{K}}=C P T_{\mathrm{K}}$

$$
\begin{aligned}
m^{2} & =p_{0}^{2}-\vec{p}^{2} \\
& =\Theta_{\kappa}\left(p_{0}\right)^{2}-\Theta_{\kappa}(\vec{p})^{2}
\end{aligned}
$$

and de Sitter metric in momentum space, with radius $=\kappa$

CPT thus deforms observables

e.g. Lorentz factors

Usual Lorentz boost factor γ for a particle

$$
\gamma=\frac{E}{m}
$$

becomes $\Theta_{\kappa}=$ CPT $_{k}$-deformed for antiparticle

$$
\begin{aligned}
\gamma_{\mathrm{K}} & =\Theta_{\mathrm{K}} \gamma \\
& =\frac{\Theta_{\mathrm{K}}(E)}{m} \\
& =\frac{1}{m}\left(E-\vec{p}^{2} / \mathrm{\kappa}\right)
\end{aligned}
$$

Approach and results:
M.Arzano, J.Kowalski-Glikman, W.Wislicki, Phys.Lett. B794 (2019) 41

How to measure k-deformation?

Escape from rest frame, 1

Unstable particle at rest

$$
\psi=\sqrt{\Gamma} e^{-\Gamma t / 2+i m t}
$$

Mass m and lifetime $\tau=1 / \Gamma$ are $\Theta=$ CPT-invariant.
At rest, CPT undeformed, hence $m_{p}=m_{a}$ and $\Gamma_{p}=\Gamma_{a}$ due to CPT theorem.

In their rest frames, decay probability laws the same for particle and antiparticle

$$
\begin{aligned}
\mathcal{P}_{p} & =\psi \star \psi^{\ddagger} \\
& =\Gamma e^{-\Gamma t} \\
& =\Theta \psi \star(\Theta \psi)^{\ddagger} \\
& =\mathcal{P}_{a}
\end{aligned}
$$

How to measure k-deformation?

Escape from rest frame, 2

But they differ after Lorentz transformation

$$
\begin{aligned}
\mathcal{P}_{p} & =\frac{\Gamma E}{m} e^{-\Gamma t E / m} \\
\mathcal{P}_{a} & =\Gamma\left(\frac{E}{m}-\frac{\vec{p}^{2}}{\kappa m}\right) e^{-\Gamma t\left(\frac{E}{m}-\frac{\vec{D}^{2}}{\kappa m}\right)}
\end{aligned}
$$

Consequences could be examined experimentally by precisely measuring the particle and antiparticle lifetimes..
.. provided lifetime is dilated and deformed enough w.r.t. precision of its measurement

Correction to lifetime at least comparable to experimental accuracy $\vec{p}^{2} /(\kappa m) \simeq \sigma_{\tau} / \tau$

- In this scheme, CPT violation is momentum-dependent, thus explicitly depends on the Lorentz frame
- Implementation of interplay between CPT and Lorentz (non)invariance, as suggested by general theorems
- Perhaps the only proposed CPT-violation mechanism where CPT violation entails breakdown of Lorentz invariance, explicitly (and in a simple way)
- Model still under development, we have no Lagrangian yet

Measure the lifetimes

The best candidate is $\mu^{ \pm}$

$\tau_{\mu}=(2.1969811 \pm$
$0.0000022) \times 10^{-6} \mathrm{~S}$
LHC: $p=6.5 \mathrm{TeV} / \mathrm{c}$
FCC: $p=50 \mathrm{TeV} / \mathrm{c}$
©

Possible
experimental setup:
$J / \psi \rightarrow \mu^{+} \mu^{-}$
Measure $\tau_{\mu+}$ and
$\tau_{\mu^{-}}$for same energy muons

Measure the lifetimes

Possible biases, etc.

In addition to experimental accuracy, need to control possible subtle effects distorting decay law

If not at rest, the exponential law with constant Γ is not exact (L. Khalfin, J. Exp. Theor. Phys. 33 (1957) 1371)

$$
\begin{aligned}
\psi(t) & =\int d m e^{-i t \sqrt{m^{2}+\vec{p}^{2}}} f_{\text {Breit-Wigner }}(m ; \Gamma) \\
\mathcal{P}(t) & \sim e^{-\Gamma(\vec{p}) t}
\end{aligned}
$$

However, \vec{p}-dependent deviations of $\Gamma(\vec{p})$ from $\gamma \Gamma=m \Gamma / \sqrt{m^{2}+\vec{p}^{2}}$ shown to be extremely small (F . Giacosa, A. Phys. Pol. B47 (2016) 2145) if Γ / m negligible; for $\mu^{ \pm}, \Gamma / m=3 \times 10^{-18}$ and estimated correction to decay rate $<10^{-37} \Gamma$

More hopes: interference phenomena

Known to be precise tool in measuring subtle effects

Consider neutral-meson interference (K^{0}, B^{0}, etc.)

$$
\begin{gathered}
K_{L, S} \longleftarrow \phi^{0}(1020) \longrightarrow K_{S, L} \\
B_{H, L} \longleftarrow \Upsilon(10580) \longrightarrow B_{L, H}
\end{gathered}
$$

Decay-time Δt spectrum in meson rest frames and the same decay channels
$I(\Delta t) \sim e^{-\Gamma_{L} \Delta t}+e^{-\Gamma_{s} \Delta t}-2 e^{-\bar{\Gamma} \Delta t} \cos (\Delta m \Delta t), \quad \Delta m=m_{\text {heavier }}-m_{\text {lighter }}$
CPT meson-to-antimeson does not affect Δt spectrum
Following results are preliminary

Meson interference

After Lorentz boost with к-deformation of CPT

$$
\begin{aligned}
I(\Delta t) & \sim\left(\gamma-\vec{p}^{2} /(m \kappa)\right)\left(e^{-\gamma \Gamma_{L} \Delta t}+e^{-\gamma \Gamma_{S} \Delta t}\right) \\
& +\gamma \Delta t \vec{p}^{2} /(m \kappa)\left(\Gamma_{L} e^{-\gamma \Gamma_{L} \Delta t}+\Gamma_{S} e^{-\gamma \Gamma_{S} \Delta t}\right) \\
& -2 \gamma e^{-\gamma \bar{\Gamma} \Delta t}\left[\left(1+\bar{\Gamma} \Delta t \vec{p}^{2} /(m \kappa)\right) \cos (\gamma \Delta m \Delta t)+\Delta m \Delta t \vec{p}^{2} /(m \kappa) \sin (\gamma \Delta m \Delta t)\right]
\end{aligned}
$$

$\kappa \rightarrow \infty$ is no deformation
Experimental limitation:
Lorentz-amplified oscillation frequency cannot exceed inverse time resolution of experiment

$$
\frac{1}{\gamma \Delta m}>\sigma_{t}
$$

Meson interference

Best time resolution available experimentally today

LHCb gets 0.045 ps in wide momentum range
Corresponds to:
For K
$\gamma=4.3$
$E=2.2 \mathrm{GeV}$
For B

$$
\begin{aligned}
\gamma & =44 \\
E & =232 \mathrm{GeV}
\end{aligned}
$$

Meson interference

Monte Carlo estimates of p-values for $k<\infty$ hypotheses, 1

Lorentz-boosted spectra

Meson interference

Monte Carlo estimates of p-values for $k<\infty$ hypotheses, 2

Likelihoods for randomly chosen samples from κ-deformed and non-deformed spectra $\mathcal{L}(\mathrm{k})=\sum_{i=1}^{N} I(\Delta t, \kappa)$

Log-likelihood ratio $\left(N=10^{6}\right)$ is asymptotically χ_{1}^{2}

$$
\Lambda=-2 \log \frac{\mathcal{L}(\kappa)}{\mathcal{L}(\kappa=\infty)}
$$

Probability that $\kappa \geq \kappa_{0}$ is larger than 99.9% for

- $\kappa_{0}=2 \times 10^{5} \mathrm{GeV}, \quad \phi \rightarrow K_{L} K_{S}$
- $\kappa_{0}=1.2 \times 10^{8} \mathrm{GeV}, \quad \Upsilon \rightarrow B_{H} B_{L}$

Limitations weaker than from $\tau_{\mu} \odot$

Final remarks

- How big is quantum-gravitational deformation? $\mathrm{K} \sim m_{\text {Planck }}$?
- A way exists to estimate quantum-gravitational deformation κ by using CPT invariance as a tool
- CPT-violating corrections to energy-momenta $\sim p^{2} /(m \kappa)$, hence high energy desirable
- This kind of CPT violation has Lorentz violaton built in
- What kind of high-precision observables? ${ }^{1}$
- Precisely known lifetimes, e.g. τ_{μ}
- Precisely measured masses, e.g. m_{μ} or m_{π}
- From $\tau_{\mu}, \kappa \sim 10^{14} \mathrm{GeV}$ at LHC energy, good perspective to have $10^{16} \mathrm{GeV}$ at future $\sqrt{s}=100 \mathrm{GeV}$ collider (FCC at CERN)
- Neutral-meson interferometry not that promising

[^0]
Action of C, P and T

How do C, P and T act?
Space, time and charges:

$C: q$	$\rightarrow-q$	$P: q$	$\rightarrow q$	$T: q$	$\rightarrow q$
$C: \vec{x}$	$\rightarrow \vec{x}$	$P: \vec{x}$	$\rightarrow-\vec{x}$	$T: \vec{x}$	$\rightarrow \vec{x}$
$C: t \rightarrow t$	\rightarrow	$P: t \rightarrow t$	$T: t \rightarrow-t$		

Energy and momenta:

$$
\begin{aligned}
& C: \vec{p} \rightarrow \vec{p} \\
& P: \vec{p} \rightarrow-\vec{p} \\
& T: \vec{p} \rightarrow-\vec{p} \\
& C: E \rightarrow E \\
& P: E \rightarrow E \\
& T: E \rightarrow E \\
& T: i \rightarrow-i
\end{aligned}
$$

Action of k-deformed C, P and T

How do deformed C, P and T act?

- $0^{\text {th }}$ order undeformed
- $1^{s t}$ in $1 / \kappa$ to keep de Sitter metric and conserve Casimir

Antipodal operations on energy-momentum

$$
\begin{aligned}
S(p)_{0} & \simeq-p_{0}+\vec{p}^{2} / \kappa \\
S(p)_{i} & \simeq-p_{i}+p_{0} p_{i} / \kappa
\end{aligned}
$$

$$
\begin{aligned}
C_{\mathrm{\kappa}}\left(p_{0}\right) & =-S(p)_{0} & P_{\mathrm{\kappa}}\left(p_{0}\right) & =-S(p)_{0} & T_{\kappa}\left(p_{0}\right) & =-S(p)_{0} \\
C_{\mathrm{\kappa}}\left(p_{i}\right) & =-S(p)_{i} & P_{\text {к }}\left(p_{i}\right) & =S(p)_{i} & T_{\text {к }}\left(p_{i}\right) & =S(p)_{i}
\end{aligned}
$$

Accurate measurements of lifetimes and masses

Very good but at low energy

- Both muon lifetime and mass are precisely measured at low energy
- For masses, hard to find method for comparable precision at TeV energy
- For lifetime, $\sigma_{\tau}=0.045 \mathrm{ps}$, at LHC energy $\sigma_{\tau} /(\tau \gamma)=0.3 \times 10^{-13}$ for $\gamma=6 \times 10^{4}$

k-deformed momenta as coordinates of de Sitter

 space$$
-p_{0}^{2}+\sum_{i} p_{i}^{2}=\kappa^{2}
$$

$S(p)_{i}$ defined as Hopf antipode

$$
\begin{aligned}
S(p)_{i} & =\ominus p_{i} \\
& =-p_{i} \frac{\kappa}{p_{0}+p_{4}}
\end{aligned}
$$

[^0]: ${ }^{1}$ Precisely known at low energy, well-controlled Lorentz boost required when going ultra-relativistic

