Measurements of the Higgs production cross section in the $H \rightarrow \tau \tau$ decay channel with the ATLAS experiment

Alessia Murrone on behalf of the ATLAS Collaboration EPS-HEP 2019, 10-17 July, Ghent (Belgium)

1. Introduction

- $H \rightarrow \tau \tau$ is a considerably important decay channel because it allows to directly measure Yukawa coupling
- B.R. 6.32 %
- Analysis performed with data collected by the ATLAS experiment during 2015 and 2016 for an integrated luminosity of 36.1 fb⁻¹ and $\sqrt{s} = 13$ TeV
- 3 subchannels according to the τ decay \leftarrow Lep-Lep e

Lep-Lep $ee/\mu\mu/e\mu$ 12.4% Lep-Had $e/\mu + \tau_{had}$ 45.6%

4. Statistical analysis

- Maximum likelihood fit to extract the parameter of interest $\sigma_{H \to \tau\tau} \equiv \sigma_H x \mathcal{B}(H \to \tau\tau)$ where σ_H is the total cross section for all Higgs production processes (their relative contribution is assumed to be equal to the Standard Model prediction)
- Higgs invariant mass distribution m_{mmc} used in the signal regions
- Control regions used to constrain the normalisation of backgrounds
- Systematic uncertainties taken into account in the fit model as

Had-Had $\tau_{had} + \tau_{had}$ 42.0%

• Complicated signature:

 $\rightarrow \tau_{had}$ reconstruction and identification of hadronic taus

 $\rightarrow m_{mmc}$ Higgs invariant mass reconstruction done with the Missing Mass Calculator (MMC) algorithm which takes into account the missing transverse momentum due to neutrinos

2. Selections

• 2 kinds of signal regions for each decay channel exploiting different Higgs production processes (they are further divided in subregions)

VBF: targeting Vector Boson Fusion events, characterized by two high p_T jets with $|\Delta \eta(j,j)| > 3$ and $m_{jj} > 400$ GeV

Boosted: targeting Gluon Fusion events, which fail the VBF selection and are characterized by a high p_T Higgs boson

nuisance parameters

Fractional impact of

systematic uncertainties,

order of impact on $\sigma_{H \to \tau \tau}$:

Signal theory

QCD scale

they are listed in decreasing

uncertainties (ggF):

Jet energy resolution

 $Z \rightarrow \tau \tau$ normalisation

Impact = $\Delta \sigma_{H \to \tau \tau} / \sigma_{H \to \tau \tau}$

Systematic uncertainties impact on $\sigma_{H
ightarrow au au}$ [1]

5. Results

 $m_{ au au}^{
m MMC}$ [GeV] m_{MMC} distribution in the Boosted region [1]

- Dedicated **control regions** for constraining normalisation of simulated backgrounds: $Z \rightarrow ll$, Top
- A dedicated validation region for checking the $Z \rightarrow \tau \tau$ modelling but not used in the fit

3. Backgrounds estimation

- Z → ττ main irreducible background (50-90%), estimating using Monte Carlo samples, Sherpa NLO
 - Normalisation from fit to data
 - The $Z \rightarrow \tau \tau$ validation region is used to verify the correct modelling using $Z \rightarrow ll$ events

• Control regions for $Z \rightarrow ll$ (lep-lep) and **Top** (lep-lep and lep-had)

• Observed (expected) significance of signal excess with respect to the background-only hypothesis of 4.4 (4.1) σ

 $\sigma_{H \to \tau \tau} = 3.77^{+0.60}_{-0.59} \text{ (stat)}^{+0.87}_{-0.74} \text{ (syst) pb}$

 $\sigma_{H \to \tau \tau}$ measurement in the various subchannels and for the combined result. The predicted value from the standard model with its uncertainty is shown in yellow [1]

• Fit with two parameters of interest, $\sigma_{H \to \tau \tau}^{VBF}$ and $\sigma_{H \to \tau \tau}^{ggF}$, in order to separate VBF and ggF production, all the other production processes are assumed to be as in the Standard Model

 $\sigma_{H \to \tau \tau}^{VBF} = 0.28 \pm 0.09 \text{ (stat)}_{-0.09}^{+0.11} \text{ (syst) pb}$ $\sigma_{H \to \tau \tau}^{ggF} = 3.1 \pm 1.0 \text{ (stat)}_{-1.3}^{+1.6} \text{ (syst) pb}$

2D contour plot with the 95% and 68% C.L. contours in the plane $\sigma_{H\to\tau\tau}^{VBF}$, $\sigma_{H\to\tau\tau}^{ggF}$. The value predicted by the standard model is indicated by the black point while the best-fit value is shown as a star [1]

- $Z \to ll: 80 < m_{ll} < 100 \text{ GeV}$
- Top: requirement to have *b*-tagged jets

 Jets misidentified as τ or e/μ (QCD, W/Z + jets): data-driven techniques

 Template built in a dedicated control region and normalisation retrieved from fit to data (had-had) Fit with three parameters of interest performing cross section measurements in three mutually exclusive phase space regions, the selections are based on the simplified template cross sections framework

Process	Particle-level selection	σ [pb]	$\sigma^{ m SM}$ [pb]
ggF	$N_{\text{jets}} \ge 1,60 < p_{\text{T}}^{H} < 120\text{GeV}, y_{H} < 2.5$	1.79 ± 0.53 (stat.) ± 0.74 (syst.)	0.40 ± 0.05
ggF	$N_{\text{jets}} \ge 1, p_{\text{T}}^H > 120 \text{ GeV}, y_H < 2.5$	0.12 ± 0.05 (stat.) ± 0.05 (syst.)	0.14 ± 0.03
VBF	$ y_H < 2.5$	0.25 ± 0.08 (stat.) ± 0.08 (syst.)	0.22 ± 0.01

• Combined fit with Run 1 data collected at $\sqrt{s} = 7$ and $\sqrt{s} = 8$ TeV leads to an observed (expected) significance of 6.4 (5.4) σ \rightarrow first $H \rightarrow \tau \tau$ observation in ATLAS

• All the measurements are in agreement with the Standard Model prediction

[1] "Cross-section measurements of the Higgs boson decaying to a pair of tau leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector", ATLAS Collaboration, Phys. Rev. D 99, 072001