MULTI-MESSENGER ASTROPARTICLE PHYSICS through

HIERARCHICAL MODELLING

WHAT?

Statistical method

WHY?

To use more information from both theory and data

RESULT:

A more powerful and analysis and insightful results

EXAMPLE

What are the sources of

Ultra-High-Energy Cosmic Rays?

EXAMPLE

Which sources could be associated with the observed UHECRs?

KEY IDEAS

Including physics

Designing the analysis to answer the question

THEORY

DATA

Acceleration

Propagation

Detection

Energy

Arrival direction

Composition

PHYSICAL MODEL

Protons only

$$\frac{dN}{dE} \propto E^{-\alpha}$$

Source spectrum: power law

PHYSICAL MODEL

Berezinsky+1988

Chodorowski +1992

Anchordorqui+1997

De Domenico+2012

$$\frac{dE}{dz} = -\frac{E}{L_{loss}(E, z)}$$

Propagation: continuous loss approximation

PHYSICAL MODEL

$$\theta_{\rm rms} \approx 2.3^{\circ} \left(\frac{E}{50 \text{ EeV}}\right)^{-1} \left(\frac{B}{1 \text{ nG}}\right) \left(\frac{D}{10 \text{ Mpc}}\right)^{1/2} \left(\frac{l_c}{1 \text{ Mpc}}\right)^{1/2}$$

Propagation: magnetic deflections

IMPORTANCE OF ENERGY

The highest energy cosmic rays are not highly deflected and lose energy quickly

Lower energy cosmic rays are more deflected but have a longer energy loss length

Watson+2012 Soiaporn+2013

Khanin+2016

Joint fit of the energies and arrival directions

Depends on direction, energy, distance travelled, magnetic field strength...

Which sources could be associated with the observed UHECRs?

$$\underbrace{f} = \frac{F_s}{F_0 + F_s}$$

Include physical parameters

Parameterise uncertainties

VERIFICATION

Choose input parameters

Simulate data

Fit → correct answer

associated

VERIFICATION

Choose input parameters

Simulate data

● Fit → correct answer

Uncertainty

IMPORTANCE OF ENERGY

IMPORTANCE OF ENERGY

VERIFICATION

Simulation under model assumptions

APPLICATION: REAL DATA

UHECR data

Pierre Auger Observatory results (2014)

231 UHECRs above 52 EeV

Source catalogs

Fermi-LAT 2FHL gamma-ray catalog

Fermi-LAT starburst galaxy search - SBG

Swift-BAT X-ray survey

RESULTS

10-20% of UHECRs could be associated with sources

RESULTS

 Catalogs with more or nearby sources have larger associations

Cen A, M87, M83...

Highest energy
 particles are without associations!

RESULTS

 Catalogs with more or nearby sources have larger associations

Cen A, M87, M83...

Highest energy
 particles are without
 associations

PAPER

Impact of using the ultrahigh-energy cosmic ray arrival energies to constrain source associations

Francesca Capel ^{1,2★} and Daniel J. Mortlock ^{3,4,5}

Accepted 2018 December 29. in original form 2018 November 15

ABSTRACT

We present a Bayesian hierarchical model which enables a joint fit of the ultrahigh-energy cosmic ray (UHECR) energy spectrum and arrival directions within the context of a physical model for the UHECR phenomenology. In this way, possible associations with astrophysical source populations can be assessed in a physically and statistically principled manner. The importance of including the UHECR energy data and detection effects is demonstrated through simulation studies, showing that the effective GZK horizon is significantly extended for typical

verify the ability of the model to fit and recover physical ons. Finally, the model is used to assess the fraction of the hard X-ray sources. We find association fractions of $9.5^{+2.4}_{-5.9}$, $22.7^{+6.6}_{-12.4}$, and $22.8^{+6.6}_{-8.0}$ per cent

HECRs detected by the Pierre Auger Observatory which FHL catalogue, a set of starburst galaxies, and *Swift*-BAT

arXiv:1811.06464 - Now with code!

¹The Oskar Klein Centre for Cosmoparticle Physics, SE-106 91 Stockholm, Sweden

²Department of Physics, KTH Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm, Sweden

³Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK

⁴Statistics Section, Department of Mathematics, Imperial College London, London SW7 2AZ, UK

⁵Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden

CONCLUSION

 Including energies is more informative and removes unphysical associations

Complementary to other methods

The composition data can also be included!

- Same concept can be extended to multiple messengers
 - Neutrinos and cosmic rays
 - Neutrino population constraints

