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Introduction

Introduction

Stochastic Gravitational Wave (GW) background

Superposition of unresolved astrophysical sources

Cosmological events

(i) Inflation
(ii) Cosmic strings
(iii) Strong cosmological phase transitions (PTs)→

by expanding and colliding vacuum bubbles of new phase

GW background as a gravitational probe for New Physics

Focus on the EW phase transition (EWPT) relevant for EW baryogenesis

Study a simple model with multiple-step strongly 1st-order EWPTs

Study the impact of multiple-step strong PTs on GW spectra
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Introduction

The need for a strong first order PT and New Physics

Observed baryon asymmetry (BA) in the Universe

nB − nB

s
∼ 10−11

Conditions for dynamical production of the baryon asymmetry Sakharov’67

(i) B violation

(ii) C and CP violation

(iii) Departure from thermal equilibrium→ strong 1st-order PT

Nucleation of expanding broken-phase vacuum bubbles→ sphaleron suppression

φ(Tc)

Tc
& 1.1 → 1st order PT

Standard Model (SM) does not explain the BA→ the need to go beyond the SM
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Introduction

EW phase transition in multi-scalar SM extensions

The more scalar d.o.f.’s, the more complicated vacuum structure→
new possibilities for strong 1st-order EWPT at tree-level

Multi-Higgs SM extensions are very common and originate as
e.g. low-energy limits of Grand-Unified theories

Tree-level (strong) EWPT→ free energy release is largely amplified→
stronger GW signals

Tree-level weak (2nd-order) transitions can become 1st-order ones
due to quantum corrections

Certain scenarios exhibit multi-step successive 1st-order PTs

Multi-step transition→ multi-peak structures in the induced GW spectrum→
potential access by the next generation of space-based GW interferometers

GW signature of multiple EW symmetry breaking steps→
a gravitational probe for New Physics, yet unreachable at colliders
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Dynamics of phase transitions

Dynamics of phase transitions

High T → classical motion in Euclidean space described by action Ŝ3

Ŝ3 = 4π
∫∞

0
dr r2

1
2

(
dφ̂
dr

)2

+ Veff(φ̂)

 ,

Effective potential: loop and thermal corrections

V(1)
eff (φ̂) = Vtree + VCW + ∆V(1)(T)

VCW =
∑

i

(−1)Fni
m4

i

64π2

(
log

[
m2

i (φ̂α)

Λ2

]
− ci

)

∆V(1)(T) =
T4

2π2

∑
b

nbJB

[
m2

b(φ̂α)

T2

]
−
∑

f

nf JF

[
m2

f (φ̂α)

T2

] ,

φ̂→ solution of the e.o.m. found by the path that minimizes the energy.
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Dynamics of phase transitions

Nucleation temperature

Nucleation temperature Tn → the PT does effectively occur→
vacuum bubble nucleation processes

Satisfies Tn < Tc, where Tc is the critical temperature→
degenerate minima

Corresponds to probability to realize one transition per cosmological
horizon volume equal one

Γ

H4 ∼ 1 ⇒ Ŝ3

Tn
∼ 140

The phase transition rate

Γ ∼ T4

(
Ŝ3

2πT

)3/2

exp
(
−Ŝ3/T

)
.

This formalism is implemented in CosmoTransitions package
(Wainwright’12)
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The model
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The model

The model − THDSM

Model inspired by a trinification GUT [SU(3)]3 o Z3 × SU(3)F

(RP, A. Morais et al: 1610.03642, 1711.05199, 1801.02670)

Scalar SU(2)L U(1)Y U(1)F

H1 2 1 1
H2 2 1 5
ϕ 1 0 -4

Z2 symmetry Hj → −Hj (j = 1, 2) and ϕ→ −ϕ: very simple potential

V [H1,H2,ϕ] =m2
1H
†
1H1 + m2

2H
†
2H2 + m2

sϕϕ
∗ +

λ1

2

(
H
†
1H1

)2
+
λ2

2

(
H
†
2H2

)2

+
λs

2
(ϕϕ∗)2 + λ3(H

†
1H1)(H

†
2H2) + λs1(H

†
1H1)(ϕϕ

∗)

+λs2(H
†
2H2)(ϕϕ

∗) + λ ′3(H
†
1H2)(H

†
2H1)
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The model

Pyramidal representation of the transition patterns

Hj =
1√
2

(
χj + iχ ′j

φj + hj + iηj

)
, ϕ =

1√
2
(φs + SR + iSI) ,

Classical field configurations φα = {φ1,φ2,φs}

Vcl(φα) =
1
2 m2
α|φα|

2 + 1
8λα|φα|

4 + 1
4λαβ|φα|

2|φβ|
2 .

𝑯𝟏𝑯𝟐

𝛟

𝑯𝟏𝑯𝟐

𝛟

𝑯𝟏𝑯𝟐

𝛟

𝑯𝟏𝑯𝟐

𝛟

𝑯𝟏𝑯𝟐

𝛟

𝑯𝟏𝑯𝟐

𝛟

HMR HMR-1 HMR-2

LMR LMR-1 LMR-2

> Simple tree-level
analysis at finite T

> Dots→ stable minima
> Lines→ first order PT
> [0] ≡ (0, 0, 0)

> Φ ≡ (0, 0, vs)

> H1 ≡ (v1, 0, 0)

> H2 ≡ (0, v2, 0)
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The model

Examples of transition patterns

𝐻1

𝐻2

ϕ

𝐻1

𝐻2

ϕ

𝐻1

ϕ

𝐻2

𝐻1

ϕ

𝐻2

𝐻1

𝐻2

ϕ

𝐻1

𝐻2

ϕ

a.1

a.2

b.2

b.1

c.2

c.1

> Example for HMR (a.1) and HMR-1 (others) transitions
> First-order PT→ likely very strong
> Fecond order PT→ can become strong upon thermal (loop) corrections
> Study (a.1)-pattern→ the simplest and a representative one
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GW power spectrum

GW power spectrum

GW energy density per logarithmic frequency (Caprini’09,’16; Grojean’07;
Hindmarsh’14; Jinno’17; Leitao’16 etc)

h2ΩGW ≡ h2

ρc

dρGW
d log f ' h2Ωcol + h2Ωsw + h2ΩMHD

Typically, h2Ωcol dominates for strong PTs due to supercooling (Tn � Tc)

The peak amplitude

ΩGW ' 10−9
(

31.6Hn

β

)2(
α

α+ ρn

)2

ε2
(

4v3
w

0.43 + v2
w

)(
100
g?

) 1
3
, ρn = π2g∗T4

n/30

(i) Bubble wall velocity→ vw ≈ 0.6 − 0.8 (supercooling)
(ii) Release of latent heat in the transition,

α =

[
V −

dV
dT

Tn

]
false

−

[
V −

dV
dT

Tn

]
true

(iii) Efficiency of conversion of latent heat into GW, ε ≈ 1 (strong PTs)
(iv) Inverse duration of the transition, β = H Tn (Ŝ3/T) ′T |T=Tn .

The larger the PT time-scale, the smaller the frequency of the GW signal
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GW power spectrum

Strong transitions Φ→ H1, Φ→ H2 and H2 → H1
Typical time scale is small β−1 ∼ 10−6s − 10−3s
Similar properties of the transitions⇒ peaks close to each other
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GW power spectrum

To separate peaks need rather distinct time scales

[0]
O(2)→ Φ

O(1)→ H1: (m/T)3 terms promote [0]→ Φ to O(1)
[0]→ Φ weaker than Φ→ H1 ⇒ larger time scale (shift to the left)
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Summary and outlook

Summary: Traces of successive strong PTs in the
primordial GWs spectrum

Are multi-peaked GW signatures detectable by future interferometers?

Well resolved peaks if transitions have different origin O(2)→ O(1) due to
(m/T)3

Too small amplitudes in the current toy-model (for well resolved peaks)
Need larger energy budget with enhanced release of latent heat −→ less
minimal models

In general, the hypothetical observation of multiple peaks may be a signature
of multi-step transitions and may shed light on the details of the EW (and
above EW) PTs, and hence, on New Physics beyond the SM
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Summary and outlook

Outlook: Opened questions

Current analysis is a proof of concept

Impact of a generic vacuum (v1, v2, vs)?

Complete GUT inspired model with local U(1)F −→ new contributions to
(m/T)3 terms due to a Z ′

Impact of a larger scalar sector?

Emergence and detectability of exotic cosmological objects
(e.g. coexisting, nested and reoccurring bubbles)

What happens, e.g. when a nested bubble expands faster than its mother
bubble? More complicated features in the GWs spectrum?

What is the impact of such objects for EWBG?
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Backup slides: Exotic cosmological objects

𝑯𝟏𝑯𝟐

𝛟

Consider H1 the true vacuum
Two possible breaking patterns

> Φ→ H1 and Φ→ H2 → H1

> [0]→ Φ is second order

1 Tn (Φ→ H1) ∼ Tn (Φ→ H2): Coexisting bubbles
2 Tn (Φ→ H2) > Tn (H2 → H1) > Tn (Φ→ H1): Nested bubbles
3 Below Tn (H2 → H1), Φ→ H1 eliminates Φ-phase: Reoccurring bubbles

Φ Universe

H1

H1

H1

H1

H2

H2

H2

H2

H2

Tn (Φ → H1) ∼ Tn (Φ → H2)

Φ Universe

Tn (Φ → H1) < Tn (H2 → H1) < Tn (Φ → H2)

H2

H2

H2 H1

H1 H1

H1 H1

H1

H1

H1

H1

Φ → H1 Universe

Tn (Φ → H1) < Tn (H2 → H1) < Tn (Φ → H2)

H2

H2

H2

H1

H1

H1 H1

H1 H1
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Transition i→ j when
Ŝ3/Tn ∼ 140
Bubble i nucleated
inside j: i(j)
[0]→ Φ is second
order
These objects need
not too different Tn

symmetries in the
potential (Ivanov
[1702.07542])
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Backup slides: GW spectrum characteristics
GW signals calculation
(for more details, see Caprini’16; Grojean’07; Leitao’16)

Using α and β, one computes the bubble-wall velocity (≈ 0.6-0.8) and the
efficiency coefficient (accounting for the latent leat saturation for runaway
bubbles)
For each of the three contributions (Ωcol, Ωsw, ΩMHD terms)

GWs signal ∼ amplitude× spectral shape(f/fpeak)

where the peak frequency (contains redshift information)

fpeak ' 16.5Hz
(

fn
Hn

)(
Tn

108GeV

)(
100
g?

) 1
6

with peak frequency at nucleation time fn = 0.62β
1.8−0.1vw+v2

w

Details of the particle physics model encoded in Tn and α.
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Backup slides: The sphaleron solution

Note: from the greek shpaleros (σϕαλερoσ): ready to fall

Non-trivial transitions between physically identical but topologically
distinct vacua

Identified by the Chern-Simons number NCS ∈ Z

Axial B + L anomaly in a SM-like theory yields ∆B = Nf∆NCS

B − L current is conserved

http://astr.phys.saga-u.ac.jp/ funakubo/yitp/files/funakubo.pdf

T = 0: Instanton solution
> Tunnelling prob. ∼ 10−170 (EW theory)

T 6= 0: Sphaleron solution − thermal jump
> Transition prob. ∼ T4

> Static saddle-point solution
> Nf = 3⇒ B→ 3B
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Backup slides: Sphaleron washout criterion

First order phase transition:

Nucleation of broken phase vacuum bubbles expanding in the surrounding
plasma of unbroken symmetry

> Particles in the plasma experience the passing bubble

> Reflection of particles→ plasma out of equilibrium

> With CP-violation, matter/anti-matter asymmetry accumulates over time
inside the bubble (different reflection coefficients)

> Sphaleron process (active in unbroken phase) provides

(i) B-violation (quantified by sphaleron rate)
(ii) C-violation (only couples to LH-fermions)

[hep-ph] 1302.6713
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Backup slides: Sphaleron washout criterion

If sphaleron process still active after phase transition the system restores
equilibrium, B = 0, after a time of the order of the Hubble scale.

Broken Phase:

Γsph ' T4e−Esph/T , Esph '
4πφc

g
Ξ, Ξ ' 2.8

Γsph in broken phase needs to be much smaller than Hubble scale

Γsph � HT3 ⇒ φc

Tc
& 1.1

Sphaleron processes suppressed in the broken phase
Avoid washout of generated baryon asymmetry
EWBG can be realized (in the SM needs 40 GeV Higgs mass)
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