Primordial gravitational waves from sequential electroweak phase transitions

António P. Morais¹ Roman Pasechnik²

¹Center for Research and Development in Mathematics and Applications (CIDMA) Aveiro University, Aveiro, Portugal

²Department of Theoretical Physics, Lund university, Lund, Sweden

EPS-HEP 2019

Based upon 1801.02670 and 1802.10109

APM, RP (AU, LU)

Primordial gravitational waves from sequential electroweak phase transitions

Introduction

Dynamics of phase transitions

- GW power spectrum
- Summary and outlook

Introduction

2 Dynamics of phase transitions

- GW power spectrum
- 5 Summary and outlook

Introduction

Stochastic Gravitational Wave (GW) background

- Superposition of unresolved astrophysical sources
- Cosmological events
 - (i) Inflation
 - (ii) Cosmic strings
 - (iii) Strong cosmological phase transitions (PTs) → by expanding and colliding vacuum bubbles of new phase

GW background as a gravitational probe for New Physics

- Focus on the EW phase transition (EWPT) relevant for EW baryogenesis
- Study a simple model with multiple-step strongly 1st-order EWPTs
- Study the impact of multiple-step strong PTs on GW spectra

Introduction

The need for a strong first order PT and New Physics

Observed baryon asymmetry (BA) in the Universe

$$\frac{n_B-n_{\overline{B}}}{s}\sim 10^{-11}$$

Conditions for dynamical production of the baryon asymmetry Sakharov'67

(i) B violation

- (ii) C and CP violation
- (iii) Departure from thermal equilibrium \rightarrow strong 1st-order PT

Nucleation of expanding broken-phase vacuum bubbles \rightarrow sphaleron suppression

$$\frac{\Phi(T_c)}{T_c} \gtrsim 1.1 \qquad \rightarrow \qquad 1^{\text{st}} \text{ order PT}$$

Standard Model (SM) does not explain the BA \rightarrow the need to go beyond the SM

APM, RP (AU, LU)

Primordial gravitational waves from sequential electroweak phase transitions

Introduction

EW phase transition in multi-scalar SM extensions

- The more scalar d.o.f.'s, the more complicated vacuum structure → new possibilities for strong 1st-order EWPT at tree-level
- Multi-Higgs SM extensions are very common and originate as e.g. low-energy limits of Grand-Unified theories
- Tree-level (strong) EWPT \rightarrow free energy release is largely amplified \rightarrow stronger GW signals
- Tree-level weak (2nd-order) transitions can become 1st-order ones due to quantum corrections
- Certain scenarios exhibit multi-step successive 1st-order PTs
- Multi-step transition → multi-peak structures in the induced GW spectrum → potential access by the next generation of space-based GW interferometers
- GW signature of multiple EW symmetry breaking steps → a gravitational probe for New Physics, yet unreachable at colliders

APM,RP (AU,LU)

Introduction

Dynamics of phase transitions

- GW power spectrum
- 5 Summary and outlook

Dynamics of phase transitions

• High T
ightarrow classical motion in Euclidean space described by action \hat{S}_3

$$\hat{S}_3 = 4\pi \int_0^\infty \mathrm{d}r \, r^2 \left\{ \frac{1}{2} \left(\frac{\mathrm{d}\hat{\varphi}}{\mathrm{d}r} \right)^2 + V_{\mathrm{eff}}(\hat{\varphi}) \right\} \,,$$

Effective potential: loop and thermal corrections

$$\begin{split} V_{\rm eff}^{(1)}(\hat{\Phi}) &= V_{\rm tree} + V_{\rm CW} + \Delta V^{(1)}(T) \\ V_{\rm CW} &= \sum_i (-1)^F n_i \frac{m_i^4}{64\pi^2} \left(\log\left[\frac{m_i^2(\hat{\Phi}_{\alpha})}{\Lambda^2}\right] - c_i \right) \\ \Delta V^{(1)}(T) &= \frac{T^4}{2\pi^2} \left\{ \sum_b n_b J_B\left[\frac{m_b^2(\hat{\Phi}_{\alpha})}{T^2}\right] - \sum_f n_f J_F\left[\frac{m_f^2(\hat{\Phi}_{\alpha})}{T^2}\right] \right\} \,, \end{split}$$

• $\hat{\varphi} \rightarrow$ solution of the e.o.m. found by the path that minimizes the energy.

APM, RP (AU, LU)

Nucleation temperature

- Nucleation temperature $T_n \rightarrow$ the PT does effectively occur \rightarrow vacuum bubble nucleation processes
- Satisfies $T_n < T_c$, where T_c is the critical temperature \rightarrow degenerate minima
- Corresponds to probability to realize one transition per cosmological horizon volume equal one

$$\frac{\Gamma}{H^4} \sim 1 \qquad \Rightarrow \qquad \frac{\hat{S}_3}{T_n} \sim 140$$

• The phase transition rate

$$\Gamma \sim T^4 \left(rac{\hat{S}_3}{2\pi T}
ight)^{3/2} \exp\left(-\hat{S}_3/T
ight) \,.$$

 This formalism is implemented in CosmoTransitions package (Wainwright'12)

Introduction

2 Dynamics of phase transitions

- GW power spectrum
- 5 Summary and outlook

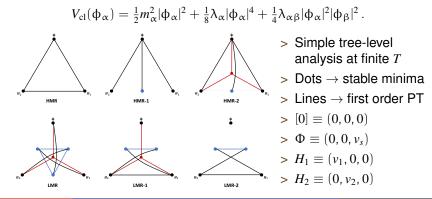
The model

The model – THDSM

 Model inspired by a trinification GUT [SU(3)]³ ⋊ Z₃ × SU(3)_F (RP, A. Morais et al: 1610.03642, 1711.05199, 1801.02670)

Scalar	$SU(2)_L$	$U(1)_{Y}$	$U(1)_F$
\mathcal{H}_1	2	1	1
\mathcal{H}_2	2	1	5
φ	1	0	-4

• \mathbb{Z}_2 symmetry $\mathcal{H}_j \rightarrow -\mathcal{H}_j$ (j = 1, 2) and $\phi \rightarrow -\phi$: very simple potential

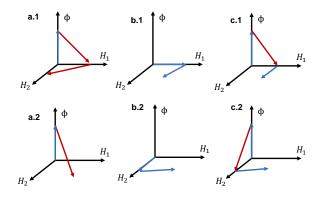

$$\begin{split} V\left[\mathcal{H}_{1},\mathcal{H}_{2},\varphi\right] =& m_{1}^{2}\mathcal{H}_{1}^{\dagger}\mathcal{H}_{1} + m_{2}^{2}\mathcal{H}_{2}^{\dagger}\mathcal{H}_{2} + m_{s}^{2}\varphi\varphi^{*} + \frac{\lambda_{1}}{2}\left(\mathcal{H}_{1}^{\dagger}\mathcal{H}_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(\mathcal{H}_{2}^{\dagger}\mathcal{H}_{2}\right)^{2} \\ &+ \frac{\lambda_{s}}{2}(\varphi\varphi^{*})^{2} + \lambda_{3}(\mathcal{H}_{1}^{\dagger}\mathcal{H}_{1})(\mathcal{H}_{2}^{\dagger}\mathcal{H}_{2}) + \lambda_{s1}(\mathcal{H}_{1}^{\dagger}\mathcal{H}_{1})(\varphi\varphi^{*}) \\ &+ \lambda_{s2}(\mathcal{H}_{2}^{\dagger}\mathcal{H}_{2})(\varphi\varphi^{*}) + \lambda_{3}'(\mathcal{H}_{1}^{\dagger}\mathcal{H}_{2})(\mathcal{H}_{2}^{\dagger}\mathcal{H}_{1}) \end{split}$$

The model

Pyramidal representation of the transition patterns

$$\mathfrak{H}_{j} = rac{1}{\sqrt{2}} \begin{pmatrix} \chi_{j} + i\chi_{j}' \\ \varphi_{j} + h_{j} + i\eta_{j} \end{pmatrix}$$
, $\varphi = rac{1}{\sqrt{2}} \left(\varphi_{s} + S_{R} + iS_{I} \right)$,

• Classical field configurations $\phi_{\alpha} = \{\phi_1, \phi_2, \phi_s\}$



APM, RP (AU, LU)

Primordial gravitational waves from sequential electroweak phase transitions

The model

Examples of transition patterns

- > Example for HMR (a.1) and HMR-1 (others) transitions
- > First-order PT \rightarrow likely very strong
- > Fecond order $PT \rightarrow$ can become strong upon thermal (loop) corrections
- > Study (a.1)-pattern \rightarrow the simplest and a representative one

APM,RP (AU,LU)

Introduction

2 Dynamics of phase transitions

- GW power spectrum
 - 5 Summary and outlook

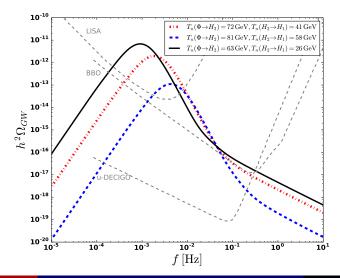
GW power spectrum

• GW energy density per logarithmic frequency (Caprini'09,'16; Grojean'07; Hindmarsh'14; Jinno'17; Leitao'16 etc)

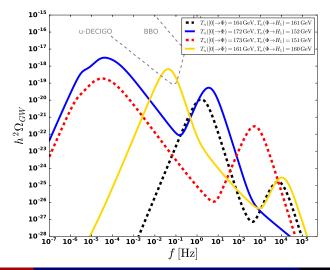
$$h^2\Omega_{
m GW}\equiv rac{h^2}{
ho_c}rac{d
ho_{
m GW}}{d\log f}\simeq h^2\Omega_{
m col}+h^2\Omega_{
m sw}+h^2\Omega_{
m MHD}$$

- Typically, $h^2 \Omega_{col}$ dominates for strong PTs due to supercooling ($T_n \ll T_c$)
- The peak amplitude

$$\Omega_{\rm GW} \simeq 10^{-9} \left(\frac{31.6H_n}{\beta}\right)^2 \left(\frac{\alpha}{\alpha+\rho_n}\right)^2 \epsilon^2 \left(\frac{4v_w^3}{0.43+v_w^2}\right) \left(\frac{100}{g_\star}\right)^{\frac{1}{3}}, \quad \rho_n = \pi^2 g_* T_n^4/30$$


- (i) Bubble wall velocity $\rightarrow v_w \approx 0.6 0.8$ (supercooling)
- (ii) Release of latent heat in the transition,

$$\alpha = \left[V - \frac{dV}{dT} T_n \right]_{\text{false}} - \left[V - \frac{dV}{dT} T_n \right]_{\text{true}}$$


(iii) Efficiency of conversion of latent heat into GW, $\epsilon \approx 1$ (strong PTs) (iv) Inverse duration of the transition, $\beta = H T_n (\hat{S}_3/T)'_T|_{T=T_n}$.

• The larger the PT time-scale, the smaller the frequency of the GW signal

- Strong transitions $\Phi \rightarrow H_1$, $\Phi \rightarrow H_2$ and $H_2 \rightarrow H_1$
- Typical time scale is small $\beta^{-1} \sim 10^{-6} s 10^{-3} s$
- Similar properties of the transitions ⇒ peaks close to each other

- To separate peaks need rather distinct time scales
- $[0] \xrightarrow{O(2)} \Phi \xrightarrow{O(1)} H_1: (m/T)^3$ terms promote $[0] \to \Phi$ to O(1)
- $[0] \rightarrow \Phi$ weaker than $\Phi \rightarrow H_1 \Rightarrow$ larger time scale (shift to the left)

Introduction

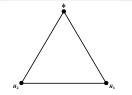
2 Dynamics of phase transitions

3 The model

GW power spectrum

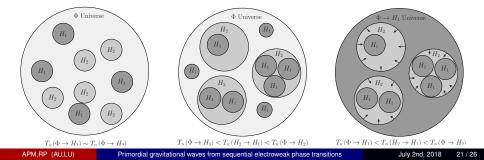
5 Summary and outlook

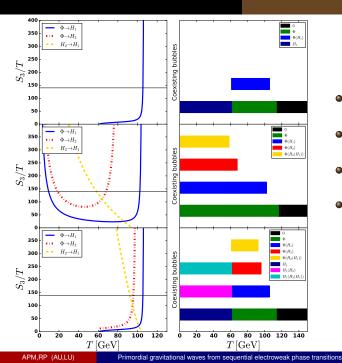
Summary: Traces of successive strong PTs in the primordial GWs spectrum


- Are multi-peaked GW signatures detectable by future interferometers?
 - Well resolved peaks if transitions have different origin $O(2) \rightarrow O(1)$ due to $(m/T)^3$
 - Too small amplitudes in the current toy-model (for well resolved peaks)
 - $\bullet\,$ Need larger energy budget with enhanced release of latent heat \longrightarrow less minimal models

In general, the hypothetical observation of multiple peaks may be a signature of multi-step transitions and may shed light on the details of the EW (and above EW) PTs, and hence, on New Physics beyond the SM

Outlook: Opened questions


- Current analysis is a proof of concept
- Impact of a generic vacuum (v₁, v₂, v_s)?
- Complete GUT inspired model with local $U(1)_F \longrightarrow$ new contributions to $(m/T)^3$ terms due to a Z'
- Impact of a larger scalar sector?
- Emergence and detectability of exotic cosmological objects (e.g. coexisting, nested and reoccurring bubbles)
- What happens, e.g. when a nested bubble expands faster than its mother bubble? More complicated features in the GWs spectrum?
- What is the impact of such objects for EWBG?


Backup slides: Exotic cosmological objects

- Consider *H*₁ the true vacuum
- Two possible breaking patterns
 - $> \Phi \rightarrow H_1 \text{ and } \Phi \rightarrow H_2 \rightarrow H_1$
 - > $[0] \rightarrow \Phi$ is second order

• $T_n (\Phi \to H_1) \sim T_n (\Phi \to H_2)$: Coexisting bubbles • $T_n (\Phi \to H_2) > T_n (H_2 \to H_1) > T_n (\Phi \to H_1)$: Nested bubbles • Below $T_n (H_2 \to H_1), \Phi \to H_1$ eliminates Φ -phase: Reoccurring bubbles

- Transition $i \rightarrow j$ when $\hat{S}_3/T_n \sim 140$
- Bubble *i* nucleated inside *j*: *i*(*j*)
- $\bullet \ \ [0] \to \Phi \text{ is second} \\ \text{order}$
- These objects need not too different *T_n*
 - symmetries in the potential (Ivanov [1702.07542])

Backup slides: GW spectrum characteristics

GW signals calculation

(for more details, see Caprini'16; Grojean'07; Leitao'16)

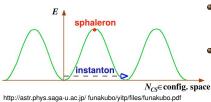
- Using α and β , one computes the bubble-wall velocity (\approx 0.6-0.8) and the efficiency coefficient (accounting for the latent leat saturation for runaway bubbles)
- For each of the three contributions (Ω_{col} , Ω_{sw} , Ω_{MHD} terms)

GWs signal ~ *amplitude* × *spectral shape*(f/f_{peak})

where the peak frequency (contains redshift information)

$$f_{\text{peak}} \simeq 16.5 Hz \left(\frac{f_n}{H_n}\right) \left(\frac{T_n}{10^8 \text{GeV}}\right) \left(\frac{100}{g_{\star}}\right)^{\frac{1}{6}}$$

with peak frequency at nucleation time $f_n = \frac{0.62\beta}{1.8 - 0.1\nu_w + \nu_w^2}$


Details of the particle physics model encoded in T_n and α.

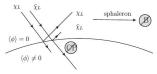
APM,RP (AU,LU)

Backup slides: The sphaleron solution

Note: from the greek *shpaleros* ($\sigma \phi \alpha \lambda \epsilon \rho \sigma \sigma$): ready to fall

- Non-trivial transitions between physically identical but topologically distinct vacua
 - Identified by the Chern-Simons number $N_{CS} \in \mathbb{Z}$
 - Axial B + L anomaly in a SM-like theory yields $\Delta B = N_f \Delta N_{CS}$
 - *B*−*L* current is conserved

• T = 0: Instanton solution


- > Tunnelling prob. $\sim 10^{-170}$ (EW theory)
- $T \neq 0$: Sphaleron solution thermal jump
 - > Transition prob. $\sim T^4$
 - > Static saddle-point solution
 - > $N_f = 3 \Rightarrow B \rightarrow 3B$

Backup slides: Sphaleron washout criterion

• First order phase transition:

Nucleation of broken phase vacuum bubbles expanding in the surrounding plasma of unbroken symmetry

- > Particles in the plasma experience the passing bubble
- > Reflection of particles \rightarrow plasma out of equilibrium
- With CP-violation, matter/anti-matter asymmetry accumulates over time inside the bubble (different reflection coefficients)
- > Sphaleron process (active in unbroken phase) provides
 - (i) B-violation (quantified by sphaleron rate)
 - (ii) C-violation (only couples to LH-fermions)

[hep-ph] 1302.6713

APM, RP (AU, LU)

Backup slides: Sphaleron washout criterion

If sphaleron process still active after phase transition the system restores equilibrium, B = 0, after a time of the order of the Hubble scale.

Broken Phase:

$$\Gamma_{sph} \simeq T^4 e^{-E_{sph}/T}, \qquad E_{sph} \simeq rac{4\pi \phi_c}{g} \Xi, \qquad \Xi \simeq 2.8$$

Γ_{sph} in broken phase needs to be much smaller than Hubble scale

$$\Gamma_{sph} \ll HT^3 \Rightarrow \frac{\Phi_c}{T_c} \gtrsim 1.1$$

- Sphaleron processes suppressed in the broken phase
- Avoid washout of generated baryon asymmetry
- EWBG can be realized (in the SM needs 40 GeV Higgs mass)

APM, RP (AU, LU)