Coherent Meson Production in the NOMAD Experiment

Chris Kullenberg Sanjib R. Mishra

EPS-HEP 12 July 2019

Outline

- Coherent Meson Production
- Motivation and the NOMAD Detector
- Coherent π^0
- Coherent ρ^0

Outline

• Coherent Meson Production

- Motivation and the NOMAD Detector
- Coherent π^0
- Coherent ρ^0

Coherent Meson Production in Neutrino Interactions

- * All nucleons in target nucleus participate coherently in interaction
- * Low momentum transfer to nucleus (else a single nucleon can be ejected)
- * Nucleus recoils intact, and in its ground state
- * No exchange of quantum numbers (charge, spin, isospin)
- * Emerging meson has small angle w.r.t. incident neutrino

Neutrino-Induced Coherent Pion Production

$$\nu_{\mu} \ \mathcal{A} \ \rightarrowtail \ \nu_{\mu} \ \mathcal{A} \ \pi^{0}$$

* Low Q^2 with CVC Goldberger-Treinman relation + PCAC: \Rightarrow Adler Relation ν -production $\leftrightarrow \pi$ -scattering

$$|\langle eta | \partial_\lambda \mathbf{A}^\lambda | lpha
angle|^2 = \mathbf{f}_\pi^2 | \mathcal{M}(\pi lpha o eta) |^2$$

$$\frac{d^3\sigma\left(\nu\mathcal{A}\to\nu\pi^0\mathcal{A}\right)}{dx\ dy\ dt}=\frac{G_F^2ME_\nu}{2\pi^2}f_\pi^2(1-y)\left(\frac{M_A^2}{M_A^2+Q^2}\right)^2\left[\frac{d\sigma(\pi\mathcal{A}\to\pi\mathcal{A})}{dt}\right]$$

where G_F is the weak coupling constant, M the target mass, M_A the axial mass, y the fraction of energy transferred to the hadronic system, $\nu = E_{\nu} - E_{\mu}$, $Q^2 = -q^2 = -(k - k')^2$, $x = Q^2/2M\nu$ (target at rest), $t = (p - p')^2$, and f_{π} the pion decay constant.

Kullenberg, Mishra

Modeling of the Strong Meson-Nucleus Scattering

We follow Rein and Sehgal's method of modeling the meson-nucleus scattering on meson-nucleon scattering:

$$\frac{d\sigma(\pi^{0}\mathcal{A}\to\pi^{0}\mathcal{A})}{dt} = \mathcal{A}^{2}|\mathcal{F}_{\mathcal{A}}(t)|^{2} \left. \frac{d\sigma(\pi^{0}N\to\pi^{0}N)}{dt} \right|_{t=0}$$

where A gives the number of nucleons. Using the optical theorem to model the meson-nucleon scattering:

$$\frac{d\sigma(\pi^{0}N \to \pi^{0}N)}{dt}\Big|_{t=0} = \frac{1}{16\pi} \left[\sigma_{tot}^{\pi^{0}N}\right]^{2} (1+r^{2}) \quad ; \quad r = \frac{\text{Re}(f_{\pi N}(0))}{\text{Im}(f_{\pi N}(0))}$$

with $f_{\pi N}(0)$ being the forward πN amplitude. The nuclear form factor is modeled by an exponential:

$$|F_A(t)|^2 = \exp\left(-\frac{1}{3}R_0^2A^{2/3}|t|\right)F_{abs}$$
; $R_0 = 1.12 fm$

 F_{abs} is a factor taking into account the absorption of the pion within the nucleus (assuming homogeneous sphere):

$$F_{abs} = \exp\left(-rac{9A^{1/3}}{16\pi R_0^2} \left[\sigma_{inel}^{\pi N}
ight]
ight)$$

Neutrino-Induced Coherent Rho Production

$$u_{\mu} \ \mathcal{A} \
ightarrow \ \mu \
ho \ \mathcal{A}$$

* Hadron Dominance: Piketty-Stodolsky Model \Rightarrow VMD + CVC ν -Induced $\rho \leftrightarrow \gamma$ -production ρ

$$\frac{d^3\sigma\left(\nu_{\mu}\mathcal{A}\to\mu^-\rho^+\mathcal{A}\right)}{dQ^2\ d\nu\ dt}=\frac{G_F^2 f_{\rho}^2}{4\pi^2}\frac{|q|}{\mathcal{E}_{\nu}^2}\left(\frac{Q}{Q^2+m_{\rho}^2}\right)^2\frac{(1+\epsilon R)}{1-\epsilon}\left[\frac{d\sigma^T(\rho^+\mathcal{A}\to\rho^+\mathcal{A})}{dt}\right]$$

where G_F is the weak coupling constant, $Q^2 = -q^2 = -(k - k')^2$, $t = (p - p')^2$, $\nu = E_{\nu} - E_{\mu}$, the polarization parameter $\epsilon = \frac{4E_{\nu}E_{\mu}-Q^2}{4E_{\nu}E_{\mu}+Q^2+2\nu^2}$, and $R = \frac{d\sigma^L/dt}{d\sigma^T/dt}$ with σ^L and σ^T as the longitudinal and transverse ρ -nucleus cross-sections. The ρ form factor f_{ρ} is related to the corresponding factor in charged-lepton scattering, $f_{\rho}^{\pm} = f_{\rho 0}^{\gamma}\sqrt{2}\cos\theta_{C}$, θ_{C} is the Cabibbo angle and $f_{\rho}^{\gamma} = m_{\rho}^{2}/\gamma_{\rho}$ is the coupling of ρ^{0} to photon $(\gamma_{\rho}^{2}/4\pi = 2.4 \pm 0.1)$. Coherent- ρ^0 -vs- Coherent- ρ^+

- * Coherent ρ^{\pm} observed by E546, E632, SKAT, and BEBC Precision of $\pm 25-30\%$
- * Measurement of Coherent- ρ^0 has never been reported. Inclusive- ρ^0 has been measured: the most precise measurement is by NOMAD (Nucl. Phys. **B601**, 3[2001])
- * Simple relation between Coherent ρ^0 & Coherent ρ^{\pm} :

$$\frac{d^3\sigma(\nu_{\mu}\mathcal{A}\to\nu_{\mu}\rho^0\mathcal{A})}{dQ^2\ d\nu\ dt}=\frac{1}{2}\left(1-2\sin^2\theta_W\right)^2\left[\frac{d^3\sigma(\nu_{\mu}\mathcal{A}\to\mu^-\rho^+\mathcal{A})}{dQ^2\ d\nu\ dt}\right]$$

 $\Rightarrow \sigma(Coherent-\rho^{0}) \cong 0.15 \times \sigma(Coherent-\rho^{+})$

Outline

- Coherent Meson Production
- Motivation and the NOMAD Detector
- Coherent π^0
- Coherent ρ^0

Motivation

* Physics:

- * Structure of the Weak-Current and its Hadronic-Content
- * Cohπ: Partially Conserved Axial Current (PCAC) and Adler's relation
- * Cohp: Conserved Vector Current (CVC) and Vector Meson Dominance (VMD)
- * Understanding meson production in ν -interactions

* Practical:

- * $\operatorname{Coh} \pi^0$ a background to ν_e -appearance oscillation experiments
- Precise measurement of coherent mesons could constrain neutrino flux and energy scale with independent systematics

The NOMAD Detector

* CERN SPS neutrino beam ; $\overline{E}_{\nu} \approx 25 \text{GeV}$; $1.4 \times 10^6 \nu_{\mu}$ -CC events * $\frac{\text{DC} \text{ (active target)}}{\delta r < 200 \mu m}$; $\delta p \approx 3.5\%$ at p < 10 GeV/c ; Unambiguous charge sep. * TRD & Muon Chambers for PID ; ECAL (lead glass) & HCAL

Outline

- Coherent Meson Production
- Motivation and the NOMAD Detector
- Coherent π^0
- Coherent ρ^0

Coherent π^0 Candidate Event

Coh π^0 Signal: $\pi^0 \rightarrow \gamma\gamma$, and nothing else!

Backgrounds: Neutral Current π^0 production Outside Background (OBG): Events originating upstream

Kullenberg, Mishra

Coherent Meson Production

 $Coh\pi^{\mathbf{0}} \gamma_1 and \gamma_2 \zeta Plots$

$Coh\pi^0 M_{\gamma\gamma}$ Plots and Results

 $\sigma(\nu A \rightarrow \nu A \pi^0) = [72.6 \pm 8.1(stat) \pm 6.9(syst)] \times 10^{-40} cm^2/nucleus$ Physics Letters B, Volume 682, Issue 2, p. 177-184 (arXiv:0910.0062)

Outline

- Coherent Meson Production
- Motivation and the NOMAD Detector
- Coherent π^0
- Coherent ρ^0

Coherent ρ^0 Candidate Event

 $\mathrm{Coh}\rho^0$ Signal: $\rho^0 \to \pi^+\pi^-$, and nothing else!

Backgrounds: Neutral Current 2-Track V^0 Charged Current 2-Track V^0 (μ w/o μ -ID) Outside Background (OBG): K^0 s from outside-interactions

Kullenberg, Mishra

Coherent Meson Production

Coherent ρ^0 Analysis

* Calibrate OBG

- \Rightarrow 2-Track events with vertex outside
- \Rightarrow Normalize it to the K^0 peak
- * Calibrate the shape of NC-DIS

The most important variable is the shape of $\zeta_{\pi\pi}$

- \Rightarrow Use CC-DS (3, 3-&-4 Track events w. μ);
- \Rightarrow The $\pi^+\pi^-$ subjected to the standard selection
- \Rightarrow Obtain a MC(NC-DIS) Re-Weight based on Data/MC [$P_{\pi^{\pm}}, P_t \pi^{\pm}, M_{\pi\pi}, \zeta_{\pi\pi}$]
- * Normalize NCDIS (shapes reweighted using Data-Simulator)
 - \Rightarrow Use $\phi_{\pi\pi}$ distribution with $\zeta_{\pi\pi} > 0.075$

* Result

- \Rightarrow Plot $M_{\pi\pi}$; impose $0.6 \le M_{\pi\pi} \le 1.0$ GeV
- \Rightarrow Using $\zeta_{\pi\pi}$, fit for *Cohp* using ≤ 0.1 region
- ⇒ Check CC-DIS normalization
- ⇒ Systematic error analysis

Data Simulator Effect on $\zeta_{\pi\pi}$

Normalization of NCDIS and $Coh\rho^0$

Final $M_{\pi\pi}$ Plots

Number of Events

Coherent Region: $\zeta \leq 0.075$

Kullenberg, Mishra

$Systematic\ Error$

- * Data-Simulator: (Shape of ζ in NC-DIS)
 ⇒ ±0.060 (10.8%)
- * NC-DIS:
 - Using $\pm 2.3\%$ variation (constrained by $\phi_{\pi\pi}$ in the background region)

 $\Rightarrow \pm 0.044$ (7.86%)

- * CC-DIS:
 - $\Rightarrow \pm 0.013$ (2.32%)
- * OBG (K⁰):

With 718 data events used to simulate the OBG, a 3.7% variation in its normalization had a negligible effect on the $\mathrm{Coh}\rho^0$ normalization.

 $\Rightarrow \pm 0.000$ (0.0%)

* Total Systematic Error:

 $\Rightarrow \pm 0.076$ (13.6%)

* Total Error:

```
\Rightarrow 0.560 \pm 0.105 \pm 0.076 (\pm23.2%)
```

Conclusions for Coherent ρ^0 Analysis

- * We have conducted a measurement of Coherent- ρ^0 production. A clear signal of Coherent- ρ^0 is observed.
- * The analysis is data-driven; the backgrounds are constrained using control samples.
- * We observe: $560 \pm 105(Stat.) \pm 76(Syst.)$ fully corrected Coherent- ρ^0 events.
- * The rate with respect to -CC events $(1.44 * 10^6)$ is: $(3.89 \pm 0.9) * 10^{-4}$

Backup Slides

$M_{\pi\pi}$ in $\zeta_{\pi\pi}$ Signal and Background Regions

Coherent Region: $\zeta < 0.075$ non-Coherent Region: $\zeta > 0.075$ Number of Events Number of Events $*Coh\rho^0 MC$ 200 160 * NC-MC Bkg(DS-Weighted) * CC-MC Bkg * OBG-K⁰ s Bkg 140 175 120 150 100 125 100 80 60 75 50 40 25 20 0 0 0.25 0.5 0.75 M_{ar} (GeV/c²) 0.25 $\stackrel{0.5}{M_{\pi\pi}} \stackrel{0.75}{(GeV/c^2)}$ 1.5 1.75 2 1.25 1.5 1.75 2 n 1 ζππ>0.075 ζππ≤0.075

Kullenberg, Mishra

Rein and Sehgal Coh π Model Assumptions

- * Target at rest in the lab frame: $\vec{p} = (M, 0, 0, 0)$
- Lepton masses ignored

* Low
$$Q^2$$
: $\mathcal{M} = \frac{G_F}{\sqrt{2}} j^{\alpha} \omega_{\alpha}$; $j^{\alpha} = \bar{\psi}_{\ell} \gamma^{\alpha} (1 - \gamma^5) \psi_{\nu}$
 $\omega_{\alpha} = \bar{\psi}_{\rho} (V'_{\alpha} - A'_{\alpha}) \psi_{\rho} = V_{\alpha} - A_{\alpha}$

* If $m_\ell = 0$ then $Q^2 = 2E_\nu E_\mu (1 - \cos \theta)$. muon and neutrino directions || for $Q^2 \to 0$

$$oldsymbol{L}^{lphaeta} = 16 rac{E_
u E_\mu}{
u^2} oldsymbol{q}^lpha oldsymbol{q}^eta \left(q^lpha q^eta
ight.$$
 a derivative)
 $|\mathcal{M}|^2 = 8G_F^2 rac{E_
u E_\mu}{
u^2} |\partial^lpha (oldsymbol{V}_lpha - oldsymbol{A}_lpha)|^2$

* From CVC $\partial^{\alpha} V_{\alpha} = 0$ for low $Q^2 \therefore \left| |\mathcal{M}|^2 = 8G_F^2 \frac{E_{\nu} E_{\mu}}{\nu^2} |\partial^{\alpha} \mathbf{A}_{\alpha}|^2 \right|$

Coherent π Production

- * Most experiments use the Rein and Sehgal model
- * PCAC, $Q^2=0
 ightarrow$ can relate to π - ${\cal A}$ scattering

* Extended to non-zero
$$Q^2$$
 with $\left(1+rac{Q^2}{m_A^2}
ight)^{-2}$ propegator

- * Correction factor for low energy CC process (arXiv:hep-ph/0606185) $\mathcal{C} = \left(1 - \frac{1}{2} \frac{Q_{min}^2}{Q^2 + m_{\pi}^2}\right)^2 + \frac{1}{4} y \frac{Q_{min}^2 (Q^2 - Q_{min}^2)}{(Q^2 + m_{\pi}^2)^2} ; \quad \boldsymbol{Q}_{min}^2 = m_l^2 \frac{y}{1 - y}$
- * $\sigma_{\pi^+} = \sigma_{\pi^-}$, process dominated by Axial vector current with little lsovector contribution
- $* \ \sigma_{\pi^{\pm}} = 2 \sigma_{\pi^0}$ due to isospin

Data Simulator: calibrate the shape of NC-DIS

- * Select u_{μ} -CC events with 3 and 3-&-4 tracks, including the μ
- * Obtain a weight for MC(NC-DIS) using DS-Correction=Data/MC $[P_{\pi^{\pm}}, P_t \pi^{\pm}, M_{\pi\pi}, \zeta_{\pi\pi}]$
- * Apply the weight to NC-DIS
- * Repeat this study: Re-Weight for MC(NC-DIS) using Data/MC [only $\zeta_{\pi\pi}$]
- * 3-Track and (3+4)-Track ν_{μ} -CC events yield entirely consistent results \Rightarrow Use (3+4)-Track sample for the DS-correction