Conclusions from TrackML the HEP Tracking Machine Learning Challenge

Organization
Jean-Roch Vlimant (Caltech)
Vincenzo Innocente, Andreas Salzburger (CERN)
David Rousseau, Yetkin Yilmaz (LAL-Orsay)
Paolo Calafiura, Steven Farrell, Heather Gray (LBNL)
Vladimir Gligorov (LPNHE-Paris)
Sabrina Amrouche, Tobias Golling, Moritz Kiehn (Geneva University)
Laurent Basara, Cécile Germain, Isabelle Guyon, Victor Estrade (LRI-Orsay)
Edward Moyse (University of Massachusetts)
Mikhail Hushchyn, Andrey Ustyuzhanin (Yandex, HSE)
Tracking crisis

- Tracking dominates reconstruction CPU time
- At best quadratic
- HL-LHC (2025) : unmanageable
- Everything tried? → TrackML challenge
See also in outreach session talk by D. Rousseau
« TrackML : the roller coaster of organizing a HEP challenge on Kaggle and Codalab »
https://indico.cern.ch/event/577856/contributions/3423422/
See also in outreach session talk by D. Rousseau
« TrackML : the roller coaster of organizing a HEP challenge on Kaggle and Codalab »
https://indico.cern.ch/event/577856/contributions/3423422/
First phase: Accuracy
May – August 2018
Leaderboard scores

Score = \(\frac{1}{N} \sum_{\text{test events}} \sum_{\text{good hits}} \text{weights} \)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Team</th>
<th>Score</th>
<th>Hits</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Top Quarks</td>
<td>0.92182</td>
<td>10</td>
<td>19d</td>
</tr>
<tr>
<td>2</td>
<td>outrunner</td>
<td>0.90302</td>
<td>9</td>
<td>18d</td>
</tr>
<tr>
<td>3</td>
<td>Sergey Gorbunov</td>
<td>0.89353</td>
<td>6</td>
<td>18d</td>
</tr>
<tr>
<td>4</td>
<td>demelian</td>
<td>0.87079</td>
<td>35</td>
<td>1mo</td>
</tr>
<tr>
<td>5</td>
<td>Edwin Steiner</td>
<td>0.86395</td>
<td>5</td>
<td>18d</td>
</tr>
<tr>
<td>6</td>
<td>Komaki</td>
<td>0.83127</td>
<td>22</td>
<td>18d</td>
</tr>
<tr>
<td>7</td>
<td>Yuval & Trian</td>
<td>0.80414</td>
<td>56</td>
<td>18d</td>
</tr>
<tr>
<td>8</td>
<td>bestfitting</td>
<td>0.80341</td>
<td>6</td>
<td>18d</td>
</tr>
<tr>
<td>9</td>
<td>DBSCAN forever</td>
<td>0.80114</td>
<td>23</td>
<td>18d</td>
</tr>
<tr>
<td>10</td>
<td>Zidmie & KhaVo</td>
<td>0.76320</td>
<td>26</td>
<td>18d</td>
</tr>
<tr>
<td>11</td>
<td>Andrea Lonza</td>
<td>0.75845</td>
<td>15</td>
<td>18d</td>
</tr>
<tr>
<td>12</td>
<td>Finnies</td>
<td>0.74827</td>
<td>56</td>
<td>18d</td>
</tr>
<tr>
<td>13</td>
<td>Rei Matsuzaki</td>
<td>0.74035</td>
<td>12</td>
<td>18d</td>
</tr>
<tr>
<td>14</td>
<td>Mickey</td>
<td>0.73217</td>
<td>10</td>
<td>2mo</td>
</tr>
<tr>
<td>15</td>
<td>Vicens Gaitan</td>
<td>0.70429</td>
<td>19</td>
<td>1mo</td>
</tr>
<tr>
<td>16</td>
<td>Robert</td>
<td>0.69955</td>
<td>3</td>
<td>21d</td>
</tr>
<tr>
<td>17</td>
<td>Yuval-CPMP tribute band</td>
<td>0.69364</td>
<td>20</td>
<td>20d</td>
</tr>
<tr>
<td>18</td>
<td>N. Hi. Bouzu</td>
<td>0.67573</td>
<td>9</td>
<td>22d</td>
</tr>
<tr>
<td>19</td>
<td>Steins;Gate</td>
<td>0.66763</td>
<td>12</td>
<td>19d</td>
</tr>
<tr>
<td>20</td>
<td>Victor Nedel'ko</td>
<td>0.66723</td>
<td>4</td>
<td>2mo</td>
</tr>
</tbody>
</table>
Optimizing score optimizes physics
Participants dendrogram

HEP

- Finnies #12
- Zidmie & KhaVo #10
- bestfitting #8
- Rei Matsuzaki #13
- Yuval & Trian #7
- DBSCAN forever #9
- demelian #4
- Sergey Gorbunov #3
- Top Quarks #1
- Komaki #6
- Edwin Steiner #5
- outrunner #2
- Andrea Lonza #11
- Victor Nedel'ko #20
- HiddenTrack #50
- Diogo #100
- Starting kit #500

correlation distance
Phase 1 winner: Top Quarks

Illustration from J-R. Vlimant

Illustration from J.S. Wind
Phase 1 #2: outrunner

- Train DNN on hit pairs
 - 27 inputs (x, y, z, cells, …)
 - 4k-2k-2k-2k-1k hidden layers
- Compute full hit adjacency matrix:
 - probability $P(i,j)$ that 2 hits match
 - Pick high probability comb
- True Deep Learning Solution
 - No track following
 - No geometric modelling
- 1 Day / event
Second phase: Throughput
Oct 2018 – March 2019
Leaderboard evolution

- **Ranking score**:
 - 0 if time > 600 s or accuracy < 50%
 - $\sqrt{\log(1 + 600/time)} \times (\text{accuracy} - 0.5)^2$
Leaderboard evolution

27 February 2019

Computation speed (sec/event) vs Accuracy mean

- Taka
- Vicennial
- cloudkitchen
- cubus
- fastrack
Leaderboard evolution

[Graph showing the evolution of computation speed (sec/event) vs. accuracy mean over time, with data points for different teams and events labeled.]
<table>
<thead>
<tr>
<th>#</th>
<th>User</th>
<th>Entries</th>
<th>Date of Last Entry</th>
<th>score ▲</th>
<th>accuracy_mean ▲</th>
<th>accuracy_std ▲</th>
<th>computation time (sec ▲)</th>
<th>computation speed (sec/event ▲)</th>
<th>Duration ▲</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sgorbuno</td>
<td>9</td>
<td>03/12/19</td>
<td>1.1727</td>
<td>0.944 (2)</td>
<td>0.00 (14)</td>
<td>28.06 (1)</td>
<td>0.56 (1)</td>
<td>64.00 (1)</td>
</tr>
<tr>
<td>2</td>
<td>fastrack</td>
<td>53</td>
<td>03/12/19</td>
<td>1.1145</td>
<td>0.944 (1)</td>
<td>0.00 (15)</td>
<td>55.51 (16)</td>
<td>1.11 (16)</td>
<td>91.00 (6)</td>
</tr>
<tr>
<td>3</td>
<td>cloudkitchen</td>
<td>73</td>
<td>03/12/19</td>
<td>0.9007</td>
<td>0.928 (3)</td>
<td>0.00 (13)</td>
<td>364.00 (18)</td>
<td>7.28 (18)</td>
<td>407.00 (8)</td>
</tr>
<tr>
<td>4</td>
<td>cubus</td>
<td>8</td>
<td>09/13/18</td>
<td>0.7719</td>
<td>0.895 (4)</td>
<td>0.01 (9)</td>
<td>675.35 (19)</td>
<td>13.51 (19)</td>
<td>724.00 (9)</td>
</tr>
<tr>
<td>5</td>
<td>Taka</td>
<td>11</td>
<td>01/13/19</td>
<td>0.5930</td>
<td>0.875 (5)</td>
<td>0.01 (12)</td>
<td>2668.50 (23)</td>
<td>53.37 (23)</td>
<td>2758.00 (13)</td>
</tr>
<tr>
<td>6</td>
<td>Vicennial</td>
<td>27</td>
<td>02/24/19</td>
<td>0.5634</td>
<td>0.815 (6)</td>
<td>0.01 (10)</td>
<td>1270.73 (20)</td>
<td>25.41 (20)</td>
<td>1339.00 (10)</td>
</tr>
<tr>
<td>7</td>
<td>Sharad</td>
<td>57</td>
<td>03/10/19</td>
<td>0.2918</td>
<td>0.674 (7)</td>
<td>0.02 (4)</td>
<td>1902.20 (22)</td>
<td>38.04 (22)</td>
<td>1986.00 (12)</td>
</tr>
<tr>
<td>8</td>
<td>WeizmannAI</td>
<td>5</td>
<td>03/12/19</td>
<td>0.0000</td>
<td>0.133 (11)</td>
<td>0.01 (11)</td>
<td>88.08 (17)</td>
<td>1.76 (17)</td>
<td>124.00 (7)</td>
</tr>
</tbody>
</table>
#1 S. Gorbunov: « fast combinatorial »

Track Model
- local 3-hit helix

Track Prolongation
- cross the next layer
- pick the best hit
- refit with the new hit

#2 FASTTrack: Graph of neighbours, cellular automata and Kalman filter

Line width indicates a cell state, color **Red**: state updated at the iteration, **Black**: no state update

https://indico.cern.ch/event/813759/contributions/3479706/attachments/1870758/3078234/TheTrackML_workshop_talk.pdf
Algorithm outline

- hits
 - sorted in voxels
 - organised in direct acyclic graphs (DAG)

Main steps
- Select promising pairs
 - 7 million / 0.99
- Extend pairs to triples
 - 12 million / 0.97
- Extend triples to tracks
 - 12 million / 0.95
- Add duplicate hits to tracks
 - 12 million / 0.96
- Assign hits to tracks
 - 90% of hits / 0.92

TrackML Workshop CERN | M. Kunze

DAGs are pre-trained on ~25 events ground truth

DAGs are used to fast navigate through voxel space

Accuracy: 0.93
Time/event: ~7 sec
Memory: 0.7 Gb

ca. 300k
97.2%

c. 500k
99.4%

c. 2 Mio.
Conclusions

• Open tracking competition organised to reach out to CS and ML communities

• Winner and runner-up HEP tracking experts…

• Retained solution will be blend from HEP expertise and new ideas

• Dataset released on CERN Open Data Portal to serve as benchmark

• Ongoing work
Contacts

- Contact: trackml.contact@gmail.com
- https://sites.google.com/site/trackmlparticle
- Twitter: @trackmllhc
- Accuracy phase @ Kaggle: https://www.kaggle.com/c/trackml-particle-identification
- Throughput phase @ Codalab: https://competitions.codalab.org/competitions/20112
 - Write-up to be finalised
- TrackML challenge Grand Finale: https://indico.cern.ch/event/813759/
Conclusions from TrackML
the HEP Tracking Machine Learning Challenge

Organization
Jean-Roch Vlimant (Caltech)
Vincenzo Innocente, Andreas Salzburger (CERN)
David Rousseau, Yetkin Yilmaz (LAL-Orsay)
Paolo Calafiura, Steven Farrell, Heather Gray (LBNL)
Vladimir Gligorov (LPNHE-Paris)
Sabrina Amrouche, Tobias Golling, Moritz Kiehn (Geneva University)
Laurent Basara, Cécile Germain, Isabelle Guyon, Victor Estrade (LRI-Orsay)
Edward Moyse (University of Massachusetts)
Mikhail Hushchyn, Andrey Ustyuzhanin (Yandex, HSE)
Phase 2 Mikado

Author: Sergey Gorbunov

Based on Phase-1 algorithm
- runs iteratively in 80 passes
- & hit removal from high to low pT
- modifications with respect to Phase 1
- search branches enabled
- every pass has optimised parameters
- results in $O(10^4)$ parameters to be tuned,
 tuning done semi-automated

Accuracy: 0.944
Time/event: 0.56 sec
Memory: 0.1/0.178 Gb (1core/2 cores)
Phase 2 FASTrack
Author: Dmitry Emeliyanov

Accuracy: 0.944
Time/event: 1.11 sec → 0.8 sec
Memory: 0.6 Gb
recently down to

first runner-up to podium in Phase-1

Algorithm outline
- using measurement shapes to predict intervals of track inclination
- segment based track following network with embedded Kalman Filter
 - connection graph pre-build (&compiled) from Detector.csv file
 - run with a Cellular Automaton (CA), parallelised with OpenMP
- candidate building: graph traversal with applied simplified Kalman Filter
 - combinatorial track following for track completion
 - fast combinatorial Kalman Filter using 3rd order RK & simplified field includes clone identification & track merging

3 passes (hit removal):
- high momentum
- low momentum
- rest

TrackML, David Rousseau, IML, 16th April 2019
TrackML conclusion
Winning solution → not ML
Yuval & Trian (#7)
Hit ≡ (x,y,z)

kt\equiv 1/2R,z_0 \rightarrow \text{Hit} ≡ (\Phi,ct,st) \rightarrow \text{Hit} ≡ (\text{Track}_{ld})

Discretization indexed by uniqueTrackId

Random scanning over (kt,z_0) space. Merged by majority vote on card(TrackId)

\{ Hit_{ld},Track_{ld}, \text{card}(Track_{ld}) \} \equiv f(kt,z_0)

\{ Hit_{ld},Track_{ld} \}
Track_{ld} \equiv \text{HitSet} \rightarrow \text{Track}_{ld} \equiv \text{Track Features} \rightarrow \text{Binary classification on purity of hit set} \rightarrow \text{Track}_{ld} \equiv h(T)

Several clustering rounds. Merged on max h(T)

\{ \text{Hit}_{ld}, \text{Track}_{ld}, h(T) \}

\{ \text{Hit}_{ld}, \text{Track}_{ld} \}
$\text{Track}_{ld} \equiv \text{HitSet}$

$\text{Track}_{ld} \equiv \{(\Phi, ct, st)\}$

$\text{Track}_{ld} \equiv (k_t, z_0)$

MSE regression on k_t, z_0

Extend with hits by proximity of (Φ, ct, st)

$\{ \text{Hit}_{ld}, \text{Track}_{ld}, (k_t, z_0), (\Phi, ct, st) \}$

$\{ \text{Hit}_{ld}, \text{Track}_{ld} \}$
Other contestants

• #7 : Yuval & Trian
 ▶ « Binned randomized Hough transform » for clustering
 ▶ ML (LightGBM) to merge tracks

• #9 : CPMP - « DBSCAN Forever »
 ▶ DBSCAN on transformed space including deviation from helix
 ▶ On each iteration clusters = new candidate tracks, merged

• #12 : The Finnies
 ▶ DBSCAN variants → 5 hit track seeding
 ▶ LSTM → estimate 10 hits
 ▶ KNN for Track fitting
Majority particle (truth)

Examined track (reconstructed)

N_{maj}

N_{good}

N_{reco}

Purity_maj = \frac{N_{good}}{N_{maj}}

Purity_reco = \frac{N_{good}}{N_{reco}}
<passing through origin>

Scattering in detector

<homogeneous magnetic field>

Energy (hence momentum) loss
LHC / HL-LHC Plan

LHC
- **Run 1**
 - **LS1**
 - Splice consolidation button collimators
 - RGE project
 - **Eyets**
 - Experiment beam pipes
- **Run 2**
 - **LS2**
 - Injector upgrade
 - TDIS absorber
 - 11T dipole & collimator
 - Civil Eng. P1-P5
 - ATLAS - CMS upgrade phase 1
 - ALICE - LHCb upgrade
- **Run 3**
 - **LS3**
 - HL-LHC installation
 - ATLAS - CMS upgrade phase 2

HL-LHC
- **Run 4 - 5...**
 - **14 TeV**
 - Energy
 - 5 to 7 x nominal luminosity

Timeline
- 2011 to 2012
- 2013 to 2014
- 2015 to 2016
- 2017 to 2018
- 2019 to 2020
- 2021 to 2022
- 2023 to 2026
- 2027 to 2038

Integrated Luminosity
- 30 fb⁻¹
- 150 fb⁻¹
- 300 fb⁻¹
- 3000 fb⁻¹

FP7
- Hi-Lumi

Design Study
- PDR Preparation
- Assess & TDR
- Main Accelerator Components
- Major Civil Works
- Technical Infrastructure

Physics