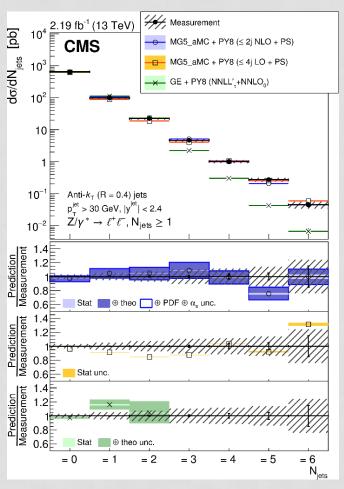

MONTE-CARLO MODELING AND TUNING STUDIES AT CMS

ROBERTO COVARELLI (UNIV./INFN TORINO)
ON BEHALF OF THE CMS COLLABORATION

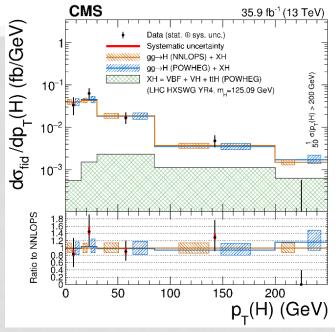
EUROPEAN PHYSICS SOCIETY CONFERENCE ON HIGH-ENERGY PHYSICS GHENT, 11 JULY 2019


QCD DESCRIPTION AT CMS

- Achieved through the use of wellestablished Monte-Carlo (MC) tools
- Full-event generators often replaced by factorized MC generation:
 - Matrix-element, i.e. up to parton-level
 - Parton shower (mostly Pythia8)
 - Applications for particle decays (e.g. EvtGen, Tauola) → not in this talk
 - Use of staged generation requires dealing with physics effects (e.g. «matching») and more complex interfacing with CMS software

- A very important ingredient of generation: underlying event (UE) → activity in addition to the hard process
 - Consists of beam-beam remnants and multi-parton interactions plus some contribution from the hard process
 - Requires modeling of MPI, hadronisation, ISR, FSR
 - Need to tune adjustable parameters in MCs

MATRIX-ELEMENT GENERATORS


- NLO QCD event generation is now standard (mostly POWHEG and MadGraph5_aMCatNLO, recently SHERPA becoming more widely used)
- Specific cases where LO is still used:
 - Final states with large particle multiplicities (e.g. V + 4jets)
 - NP signals where NLO calculations are not available/implemented
 - Final states with complicated finalstate kinematics (e.g. anomalous Hboson couplings with full tensor structure)
 - ...etc.

CMS collab., EPJC 78 (2018) 965

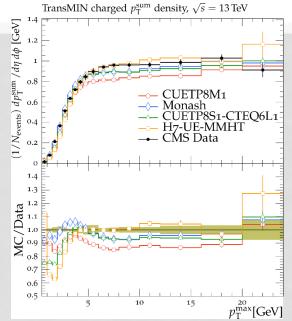
MATRIX-ELEMENT GENERATORS

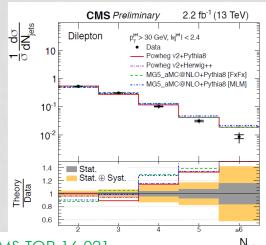
Beyond NLO

- Several NNLO calculators used for comparison with unfolded data (FEWZ, MATRIX etc.)
- Event generation only for specific processes (e.g. SM gg → H), mostly obtained through the NNLOPS method in POWHEG

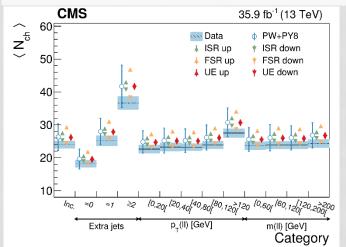
Matrix-element (ME) uncertainties

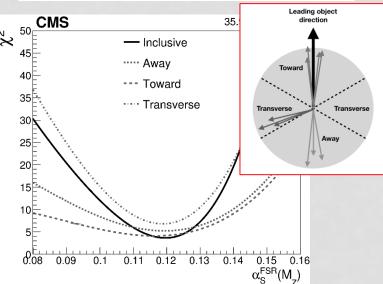
CMS collab., JHEP 11 (2017) 047


- Uncertainties via QCD scale and PDF-variation reweighting now implemented in most generators
- Significant computing improvements on both MCs and CMS implementation allowed storing of large number of weights


PARTON SHOWERS AND UE

- Pythia8 used as main PS tool in CMS
- Non-uniform recipes for uncertainties used up to 2016
 - Pythia vs. Herwig difference in relevant variables
 - ME-consistent up and down μ_R variations...
- More recently:
 - PS weights added to MC generations


Phys. Rev. D 94, 074005 (2016)


- alternative PS methods (e.g. DIRE)
- UE tuning: an important ingredient
 - Up to 2016 CUETP8M1 tune used (derived from CMS data up to 7 TeV, based on LO PDFs)
 - Not so good agreement with basic UE variables at 13 TeV and jet multiplicity in tt events

NEW APPROACHES TO UE TUNING

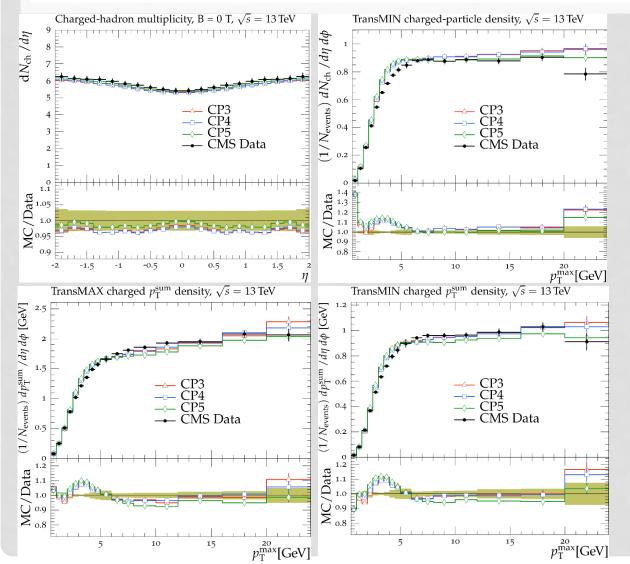
- CMS Pythia8 tunes traditionally based on LO PDFs
 - Use $\alpha_s(M_7)$ at LO for ISR, FSR, MPI = 0.130
 - UE measurements in tt events prefer lower value

CMS collab., EPJC 79 (2019) 123

- New approach: PDF and $\alpha_s(M_Z)$ consistency in ME, PS, and MPI
 - $\alpha_s(M_Z)$ at (N)NLO = 0.118
 - Following recommendation of using the same PDF set and $\alpha_s(M_Z)$ value in the ME and PS components in EPJC, 72 (2012) 2078 matched configurations
 - i.e. If ME is at NLO QCD, then use N^{≥1}LO PDFs in ME and PS
 - CMS uses now NNLO PDFs as default for ME

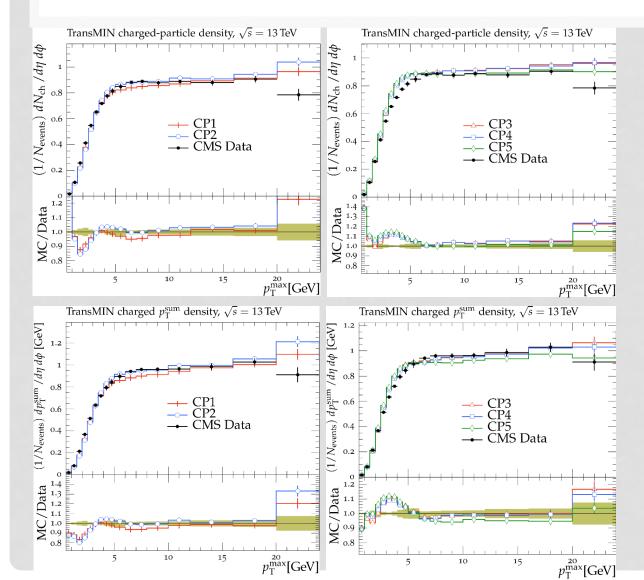
R. Covarelli

CMS TUNES WITH (N)NLO PDF

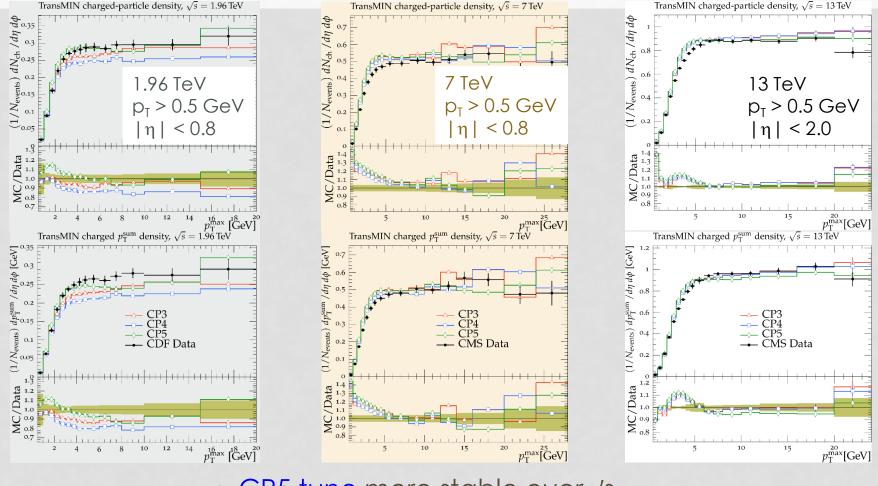

CMS collab., arXiv:1903.12179, submitted to EPJC

PYTHIA8 parameter	CP3	CP4	CP5	
PDF Set	NNPDF3.1 NLO	NNPDF3.1 NNLO	NNPDF3.1 NNLO	·
$\alpha_S(m_Z)$	0.118	0.118	0.118	
SpaceShower:rapidityOrder	off	off	on	Fived
MultipartonInteractions:EcmRef [GeV]	7000	7000	7000	Fixed
$\alpha_S^{\rm ISR}(m_{\rm Z})$ value/order	0.118/NLO	0.118/NLO	0.118/NLO	_ inputs
$\alpha_S^{\text{FSR}}(m_Z)$ value/order	0.118/NLO	0.118/NLO	0.118/NLO	
$\alpha_S^{\mathrm{FSR}}(m_{\mathrm{Z}})$ value/order $\alpha_S^{\mathrm{MPI}}(m_{\mathrm{Z}})$ value/order	0.118/NLO	0.118/NLO	0.118/NLO	
$\alpha_{\rm S}^{ m ME}(m_{ m Z})$ value/order	0.118/NLO	0.118/NLO	0.118/NLO	
MultipartonInteractions:pT0Ref[GeV]	1.52	1.48	1.41	_
MultipartonInteractions:ecmPow	0.02	0.02	0.03	
MultipartonInteractions:coreRadius	0.54	0.60	0.76 Fi	tted
MultipartonInteractions:coreFraction	0.39	0.30	0.63 pa	rameters
ColorReconnection:range	4.73	5.61	5.18	
χ^2/dof	0.76	0.80	1.04	

Data inputs:


- charged particle and Σp_T densities in "transMin" and "transMax" regions vs. p_T of the leading track (jet) at $\sqrt{s} = 1.96$, 7, and 13 TeV
- charged-particle multiplicity vs η at $\sqrt{s} = 13$ TeV

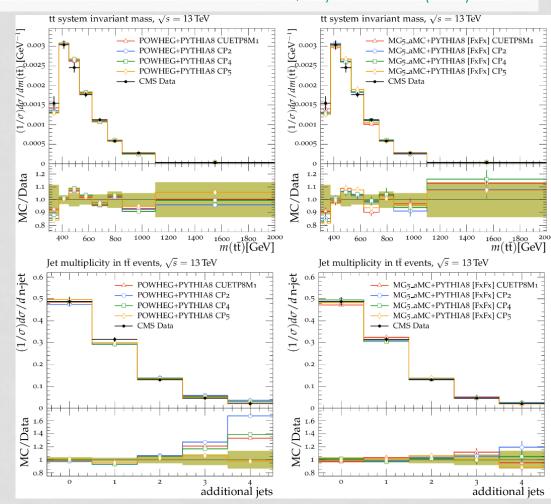
CHARGED-PARTICLE AND P_T-SUM DENSITIES (13 TEV)


- Minimum-bias data (w/ and w/o B field)
- Good agreement on dN_{ch}/dη in all regions
- Still 10%
 disagreement in
 minimum
 transverse region
 - «Plateau» regions significantly improved w.r.t.
 CUETP8M1 tune
 - Best normalization with CP5 tune

LO VS. (N)NLO PDF ORDER

- Cross-check tunes (CP1-2) use same data inputs but LO PDFs
 - Significant differences but performances similar to tunes with NNLO PDFs

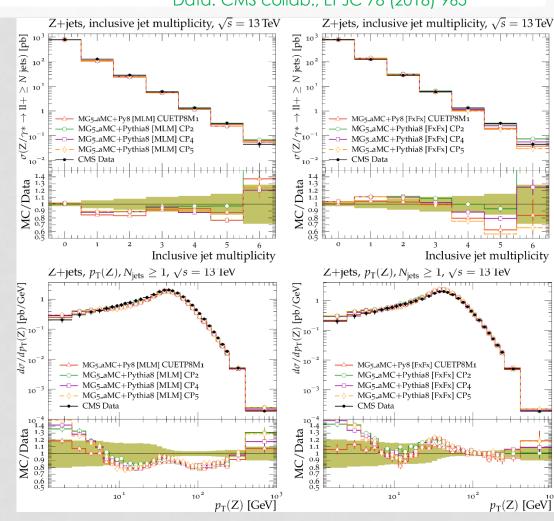
ENERGY DEPENDENCE



CP5 tune more stable over vs

VALIDATION IN TT EVENTS

Data: CMS collab., Phys. Rev. D 95 (2017) 092001

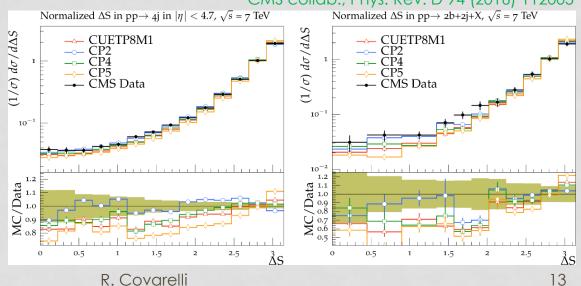

- ME generators
 - <u>Left:</u> POWHEG NLO inclusive
 - Right: MG5_aMC@NLO with FxFx merging: ≤ 2 partons at NLO
 - PDFs: NNPDF3.1 NNLO
 - $\alpha_s(m_z) = 0.118$ for both cases
 - $\mu = (m_t^2 + p_{Tt}^2)^{1/2}$
- «Standard» lepton+jets selection (with jet btagging), unfolded data
- In POWHEG description NNLO-PDF-based tunes show large improvement in the number of additional jets

VALIDATION IN DRELL-YAN EVENTS

Data: CMS collab., EPJC 78 (2018) 965

- ME generators
 - <u>Left:</u> MG5_aMC@NLO with MLM merging: ≤ 4 partons at LO
 - Right: MG5_aMC@NLO with FxFx merging: ≤ 2 partons at NLO
 - PDFs, αs(mz), μ: same choice as for tt
- Selection:
 - Dilepton within 20 GeV of the Z mass
 - $p_{Tiet} > 30 \text{ GeV}$
 - $|y_z|$, $|\eta_{jet}| < 2.4$
- Bad p_T(Z) agreement for LO
- NLO describing well N_{jets} and p_T(Z) for p_T(Z) > 5 GeV

VALIDATION IN DPS


- Use CMS 4-jet and 2b-2jet events
- Test correlation variable $\Delta S \rightarrow$ angle between the vectors of the hard di-jet (2b) and soft di-jet (2j) systems
- For the NNLO-PDF tunes:
 - Good agreement in fitted σ_{eff}
 - Not good in ΔS shapes
 - LO @ > NNLO @ > rapidity ordering @

$$\sigma_{(A,B)}^{DPS} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{eff}}$$
 $m = 1 \text{ for 4j}$
 $m = 2 \text{ for 2b2j}$

Data: CMS collab., Phys. Rev. D 89 (2014) 092010 CMS collab., Phys. Rev. D 94 (2016) 112005

Final state	$\sigma_{\rm eff}$ [mb] ($\sqrt{s} = 7$ TeV)
4j	19.0 ^{+4.7} _{-3.0} [5]
2b2j	$23.2^{+3.3}_{-2.5}$ [64]

	$\sqrt{s} = 7 \text{ TeV}$ $\sigma_{\text{eff}} \text{ [mb]}$	$\sqrt{s} = 13 \text{ TeV}$ $\sigma_{\text{eff}} \text{ [mb]}$
CP3 CP4 CP5	$24.1_{-1.5}^{+\tilde{1}.\tilde{0}} \\ 23.9_{-1.5}^{+1.0} \\ 24.0_{-1.6}^{+1.0}$	$25.2_{-1.3}^{+\tilde{1}.0} \\ 25.3_{-1.4}^{+1.1} \\ 25.3_{-1.3}^{+1.0}$

CONCLUSIONS

- Use of multi-stage MC generation up to NLO QCD + additional partons (NNLO for specific processes) now standard in CMS
 - Multiple physical / technical / computational challenges tackled
 - ME uncertainties well-established, PS uncertainties under validation
- New UE tunes are tested for which $\alpha_s(M_Z)$ and PDF order used for hard scattering, ISR, FSR, and MPI are chosen consistently
 - For the first time, predictions from Pythia8 with (N)NLO-PDF-based tunes are shown to reliably describe minimum-bias data with similar or better level agreement to predictions from LO-PDF tunes.
 - Irrespective of the NNPDF3.1 PDF order, predictions from CPX tunes reproduce the UE from 1.96 to 13 TeV data reasonably well (and better than CUETP8M1) up to $|\eta| < 4.7$
 - UE uncertainties also provided from fit («eigentunes»)
- New tunes tested against tt, Z+jets, and DPS data
 - CP5 (NNLO PDFs, rapidity ordering on) will be used as default for full-Run2 CMS MC modeling