

Stefano Gariazzo

IFIC, Valencia (ES) CSIC – Universitat de Valencia

European European European European European

Horizon 2020 European Union funding for Research & Innovation gariazzo@ific.uv.es http://ific.uv.es/~gariazzo/

Relic neutrinos: clustering and consequences for direct detection

Featuring "Milky Way" & friends

EPS-HEP 2019, Ghent (BE), 10-17/07/2019

1 Introduction

- Neutrinos and early Universe
- Relic neutrino capture

2 Neutrino clustering

- Theory
- Results from the Milky Way
- Beyond the Milky Way

³ Direct detection of relic neutrinos

4 Conclusions

Relic neutrinos in cosmology: N_{eff}

Radiation energy density ρ_r in the early Universe:

$$\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_\gamma = \left[1 + 0.2271 N_{\text{eff}}\right] \rho_\gamma$$

 ho_γ photon energy density, 7/8 is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

- $N_{
 m eff}
 ightarrow$ all the radiation contribution not given by photons
- $N_{\rm eff} \simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- Active neutrinos:

 $N_{\rm eff} = 3.046$ [Mangano et al., 2005] (damping factors approximations) $\sim N_{\rm eff} = 3.045$ [de Salas et al., 2016] (full collision terms) due to not instantaneous decoupling for the neutrinos

= + Non Standard Interactions: $3.040 < N_{
m eff} < 3.059$ [de Salas et al., 2016]

Observations: $N_{\rm eff}\simeq 3.0\pm 0.2$ [Planck 2018] Indirect probe of cosmic neutrino background!

S. Gariazzo

Relic neutrino capture

[Long et al., JCAP 08 (2014) 038]

How to directly detect non-relativistic neutrinos?

Remember that
$$\langle E_
u
angle \, \simeq \, {\cal O}(10^{-4})$$
 eV today

a process without energy threshold is necessary

[Weinberg, 1962]: neutrino capture in eta-decaying nuclei $u+n
ightarrow p+e^-$

Main background: β decay $n \rightarrow p + e^- + \bar{\nu}!$

$$\Gamma_{\text{CNB}} = \sum_{i=1}^{3} |U_{ei}|^2 [n_i(\nu_{h_R}) + n_i(\nu_{h_L})] N_T \bar{\sigma}$$

$$\sim \mathcal{O}(10) \text{ yr}^{-1}$$

$$N_T \text{ number of } ^{3}\text{H nuclei in a sample of mass } M_T \quad \bar{\sigma} \simeq 3.834 \times 10^{-45} \text{ cm}^2 \quad n_i \text{ number density of neutrino } i$$
(without clustering)

1 Introduction

- Neutrinos and early Universe
- Relic neutrino capture

2 Neutrino clustering

- Theory
- Results from the Milky Way
- Beyond the Milky Way

3 Direct detection of relic neutrinos

4 Conclusions

[JCAP 09 (2017) 034] ν clustering with N-one-body simulations Milky Way (MW) matter attracts neutrinos! clustering $\rightarrow \Gamma_{\text{CNB}} = \sum |U_{ei}|^2 f_c(m_i) [n_{i,0}(\nu_{h_R}) + n_{i,0}(\nu_{h_L})] N_T \bar{\sigma}$ $f_c(m_i) = n_i/n_{i.0}$ clustering factor \rightarrow How to compute it? Idea from [Ringwald & Wong, 2004] \longrightarrow N-one-body= N × single ν simulations \rightarrow each ν evolved from initial conditions at z = 3 \rightarrow spherical symmetry, coordinates (r, θ , p_r , l) Assumptions: \rightarrow need $\rho_{\text{matter}}(z) = \rho_{\text{DM}}(z) + \rho_{\text{baryon}}(z)$ ν s are independent only gravitational interactions how many ν s is "N"? ν s do not influence matter evolution $(\rho_{\nu} \ll \rho_{\rm DM})$ \rightarrow must sample all possible r, p_r, l \rightarrow must include all possible ν s that reach the MW (fastest ones may come from given N ν : several (up to $\mathcal{O}(100)$) Mpc!) \rightarrow weigh each neutrinos \rightarrow reconstruct final density profile with kernel method from [Merritt&Tremblay, 1994] S. Gariazzo EPS-HEP 2019, 12/07/2019 "Relic neutrinos: clusteringand consequences for direct detection" 5/13

[JCAP 09 (2017) 034]

Overdensity when $m_{ m heaviest} \simeq 60$ meV

ordering dependence from $\Gamma_{\text{CNB}} = \sum_{i=1}^{3} |U_{ei}|^2 f_i [n_i(\nu_{h_R}) + n_i(\nu_{h_L})] N_T \bar{\sigma}$

S. Gariazzo

"Relic neutrinos: clusteringand consequences for direct detection"

EPS-HEP 2019, 12/07/2019

Overdensity when $m_{ m u} \simeq 150$ meV

[JCAP 09 (2017) 034]

 \Longrightarrow minimal mass detectable by PTOLEMY if Δ \simeq 100–150 meV

no ordering dependence: $m_1 \simeq m_2 \simeq m_3 \implies f_1 \simeq f_2 \simeq f_3$

S. Gariazzo

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution

final phase space, z = 0

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution compute final position of each particle

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution compute final position of each particle final phase space, z = 0

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution

initial phase space, $z = 4 \longrightarrow$ homogeneous Fermi-Dirac distribution only interested in overdensity at Earth? **★** a lot of time is wasted! smarter way: track backwards only interesting particles! final phase space, z = 0S. Gariazzo "Relic neutrinos: clusteringand consequences for direct detection" EPS-HEP 2019, 12/07/2019 8/13

Advantages of tracking back

First advantage is in computational terms: much less points to compute

Advantages of tracking back

First advantage is in computational terms: much less points to compute

Second advantage: no need to use spherical symmetry!

Forward-tracking

initial conditions need to sample 1D for position + 2D for momentum when using spherical symmetry

> with full grid would require 3+3 dimensions!

Impossible to relax spherical symmetry!

Back-tracking

"Initial" conditions only described by 3D in momentum

(position is fixed, apart for checks)

can do the calculation with any astrophysical setup

Advantages of tracking back

First advantage is in computational terms: much less points to compute

Second advantage: no need to use spherical symmetry!

[SG+, in preparation]

In comparison with previous results:

[SG+, in preparation]

In comparison with previous results:

[SG+, in preparation]

S. Gariazzo

[SG+, in preparation]

S. Gariazzo "Relic neutrinos: clusteringand consequences for direct detection" EF

EPS-HEP 2019, 12/07/2019

1 Introduction

- Neutrinos and early Universe
- Relic neutrino capture

2 Neutrino clustering

- Theory
- Results from the Milky Way
- Beyond the Milky Way

3 Direct detection of relic neutrinos

4 Conclusions

 β and Neutrino Capture spectra

[PTOLEMY, arxiv:1902.05508]

$$\frac{d\widetilde{\Gamma}_{\text{CNB}}}{dE_e}(E_e) = \frac{1}{\sqrt{2\pi}\sigma} \sum_{i=1}^{N_{\nu}} \overline{\sigma} N_T |U_{ei}|^2 n_0 f_c(m_i) \times e^{-\frac{|E_e - (E_{\text{end}} + m_i + m_{\text{lightest}})|^2}{2\sigma^2}}$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\left[\frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \, \frac{d\Gamma_{\beta}}{dE_{e}}(x) \, \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right]\right]$$

 $\bar{\sigma}$ cross section, N_T number of tritium atoms in the source (PTOLEMY: 100 g), E_{end} endpoint, $\sigma = \Delta/\sqrt{8 \ln 2}$ standard deviation

 β and Neutrino Capture spectra

[PTOLEMY, arxiv:1902.05508]

$$\left[\frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_e}(E_e) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{i=1}^{N_{\nu}} \bar{\sigma} N_T |U_{ei}|^2 n_0 f_c(m_i) \times e^{-\frac{|E_e - (E_{\rm end} + m_i + m_{\rm lightest})|^2}{2\sigma^2}}\right]$$

$$\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{\bar{\sigma}}{\pi^{2}} N_{T} \sum_{i=1}^{N_{\nu}} |U_{ei}|^{2} H(E_{e}, m_{i})$$

$$\left|\frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}}(E_{e}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} dx \, \frac{d\Gamma_{\beta}}{dE_{e}}(x) \, \exp\left[-\frac{(E_{e}-x)^{2}}{2\sigma^{2}}\right]\right|$$

 $\bar{\sigma}$ cross section, N_T number of tritium atoms in the source (PTOLEMY: 100 g), $E_{\rm end}$ endpoint, $\sigma = \Delta/\sqrt{8 \ln 2}$ standard deviation

Detection of the relic neutrinos

[PTOLEMY, arxiv:1902.05508]

using the definition:

$$N_{\rm th}^{i}(\boldsymbol{\theta}) = A_{\beta}N_{\beta}^{i}(\hat{E}_{end} + \Delta E_{end}, m_{i}, U) + \boldsymbol{A}_{\rm CNB}N_{\rm CNB}^{i}(\hat{E}_{end} + \Delta E_{end}, m_{i}, U) + N_{b}$$

if $\mathbf{A_{CNB}} > 0$ at $N\sigma$, direct detection of CNB accomplished at $N\sigma$

1 Introduction

- Neutrinos and early Universe
- Relic neutrino capture

2 Neutrino clustering

- Theory
- Results from the Milky Way
- Beyond the Milky Way

³ Direct detection of relic neutrinos

4 Conclusions

Conclusions

2

3

amazing (neutrino) science with direct detection of relic neutrinos (e.g. PTOLEMY) [non-relativistic regime, masses, ordering?, MW structure?, Dirac/Majorana?, ...]

But it will be a technological challenge! (³H amount, low background, energy resolution, ...)

possible event rate enhancement due to clustering in the Milky Way, and also nearby galaxies/clusters!

Clustering cannot increase detection chances, but we could constrain the composition of the astrophysical environment using the event rate!

Conclusions

2

3

amazing (neutrino) science with direct detection of relic neutrinos (e.g. PTOLEMY) [non-relativistic regime, masses, ordering?, MW structure?, Dirac/Majorana?, ...]

But it will be a technological challenge! (³H amount, low background, energy resolution, ...)

possible event rate enhancement due to clustering in the Milky Way, and also nearby galaxies/clusters!

Clustering cannot increase detection chances, but we could constrain the composition of the astrophysical environment using the event rate!

Thank you for the attention!

5 Milky Way parameterization

6 PTOLEMY

S. Gariazzo

"Relic neutrinos: clusteringand consequences for direct detection"

EPS-HEP 2019, 12/07/2019

DM: Time evolution of the profiles

[JCAP 09 (2017) 034]

profile evolution from universe expansion

Baryons: the complexity of a structure

S. Gariazzo

"Relic neutrinos: clusteringand consequences for direct detection

2019. 12/07/2019

5 Milky Way parameterization

6 PTOLEMY

Events in **bin** *i*, centered at E_i :

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$

with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$ $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

Events in **bin** *i*, centered at E_i :

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$
 $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$
with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$

simulated experimental spectrum:

$$N^i_{ ext{exp}}(\hat{E}_{ ext{end}},\hat{m}_i,\hat{U})=N^i_t\pm\sqrt{N^i_t}
ight)$$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

Events in **bin** i, centered at E_i :

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$
 $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$
with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$

simulated experimental spectrum:

$$N^i_{ ext{exp}}(\hat{E}_{ ext{end}},\hat{m}_i,\hat{U})=N^i_t\pm\sqrt{N^i_t}$$

repeat for theory spectrum, free amplitudes and endpoint position:

 $N_{\rm th}^{i}(\boldsymbol{\theta}) = \boldsymbol{A}_{\beta}N_{\beta}^{i}(\hat{E}_{\textit{end}} + \Delta \boldsymbol{E}_{\textit{end}}, m_{i}, U) + \boldsymbol{A}_{\rm CNB}N_{\rm CNB}^{i}(\hat{E}_{\textit{end}} + \Delta \boldsymbol{E}_{\textit{end}}, m_{i}, U) + N_{b}$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

Events in **bin** *i*, centered at E_i :

$$N_{\beta}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\beta}}{dE_{e}} dE_{e} \qquad \qquad N_{\rm CNB}^{i} = T \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} \frac{d\widetilde{\Gamma}_{\rm CNB}}{dE_{e}} dE_{e}$$

fiducial number of events: $\hat{N}^i = N^i_\beta(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) + N^i_{\mathrm{CNB}}(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U})$

add **background**
$$\hat{N}_b = \hat{\Gamma}_b T$$
 $\longrightarrow N_t^i = \hat{N}^i + \hat{N}_b$
with $\hat{\Gamma}_b \simeq 10^{-5} \text{ Hz}$

simulated experimental spectrum:

$$N_{ ext{exp}}^{i}(\hat{E}_{ ext{end}},\hat{m}_{i},\hat{U})=N_{t}^{i}\pm\sqrt{N_{t}^{i}}
ight)$$

repeat for theory spectrum, free amplitudes and endpoint position:

$$N_{\rm th}^{i}(\boldsymbol{\theta}) = \boldsymbol{A}_{\beta}N_{\beta}^{i}(\hat{E}_{end} + \Delta \boldsymbol{E}_{end}, m_{i}, U) + \boldsymbol{A}_{\rm CNB}N_{\rm CNB}^{i}(\hat{E}_{end} + \Delta \boldsymbol{E}_{end}, m_{i}, U) + N_{b}$$

$$\mathsf{fit} \longrightarrow \left[\chi^2(\boldsymbol{\theta}) = \sum_i \left(\frac{N_{\mathrm{exp}}^i(\hat{E}_{\mathrm{end}}, \hat{m}_i, \hat{U}) - N_{\mathrm{th}}^i(\boldsymbol{\theta})}{\sqrt{N_t^i}} \right)^2 \right] \quad \mathsf{or} \, \log \mathcal{L} = -\frac{\chi^2}{2}$$

T exposure time – $(\hat{E}_{end}, \hat{m}_i, \hat{U})$ fiducial endpoint energy, masses, mixing matrix – $\theta = (A_\beta, N_b, \Delta E_{end}, A_{CNB}, m_i, U)$

"Relic neutrinos: clusteringand consequences for direct detection"

S. Gariazzo

"Relic neutrinos: clusteringand consequences for direct detection"

EPS-HEP 2019, 12/07/2019

S. Gariazzo

"Relic neutrinos: clusteringand consequences for direct detection"

EPS-HEP 2019, 12/07/2019

1 year of observation with 100 g of T source

S. Gariazzo "

"Relic neutrinos: clusteringand consequences for direct detection"

EPS-HEP 2019, 12/07/2019

things are more complicated in this way...low background needed!

1 year of observation with 100 g of T source

Perspectives for the mass determination [PTOLEMY, arxiv:1902.05508]

statistical only!

relative error on m_{lightest}

as a function of $\hat{m}_{
m lightest}$, Δ

Perspectives for the mass determination^[PTOLEMY, arxiv:1902.05508]

Perspectives for the mass determination^[PTOLEMY, arxiv:1902.05508]

statistical only!

(mass detection already with 10 mg of tritium!)

Perspectives for the mass determination^[PTOLEMY, arxiv:1902.05508]

relative error on $m_{
m lightest}$ as a function of $\hat{m}_{
m lightest}$, Δ

statistical only!

Bayesian method:

Fit fiducial ordering $(\widehat{NO} \text{ or } \widehat{IO})$ using both correct and wrong ordering

 $\widehat{\rm NO}/{\rm NO}$ vs $\widehat{\rm NO}/{\rm IO}$

 $\widehat{\mathrm{IO}}/\mathrm{NO}$ vs $\widehat{\mathrm{IO}}/\mathrm{IO}$

Requirements for PTOLEMY discoveries

What do we need to discover...

	low Γ_b	extreme Δ	a lot of ³ H
$\dots \nu$ masses?	×	×	?
$\dots \nu$ mass ordering?	×	?	?
CNB direct detection?	\checkmark	\checkmark	\checkmark

√: strongly required
 ?: not so strongly required
 X: loosely required

Dirac and Majorana neutrinos

[Roulet+, JCAP 10 (2018) 049]

10/10

direct detection through $\nu_e + {}^3\mathrm{H} \longrightarrow e^- + {}^3\mathrm{He}$

only neutrinos with correct chirality can be detected!

non-relativistic **Majorana** case: ν and $\bar{\nu}$ cannot be distinguished!

expect more events for the **Majorana** than for **Dirac** case

