

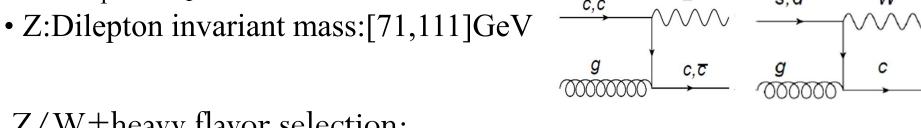
V+heavy flavor jets and constraints to PDFs in CMS

Juan Pablo Fernández Ramos (CIEMAT) on behalf of the CMS Collaboration

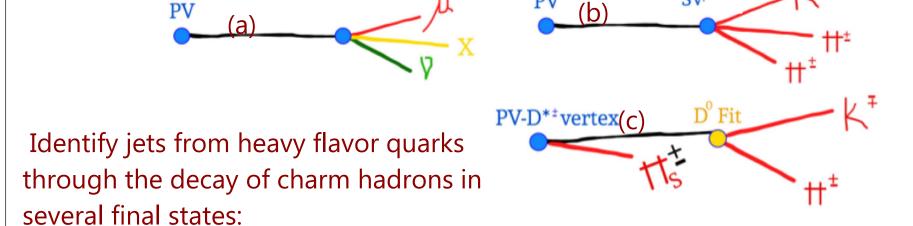
EPS-HEP2018 @ Ghent July 10-17, 2018

CMS-SMP-15-009

CMS-SMP-17-014


CMS-PAS-18-013

Introduction

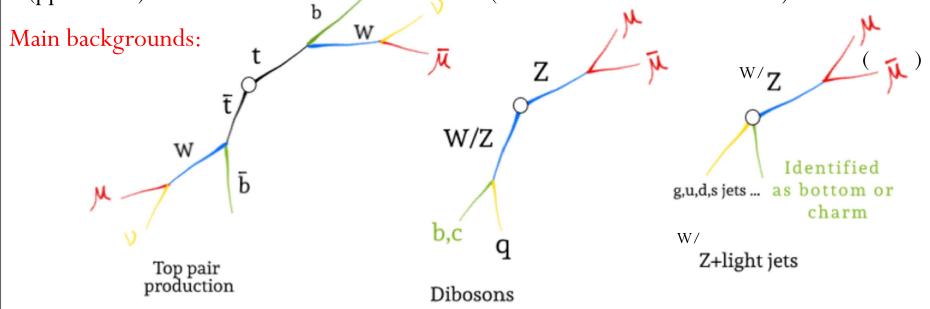

- •Measurements of $\sigma(pp \rightarrow Z/W+c)$ provide tests QCD predictions. Results sensitive to hard scattering process & associated soft QCD radiation
- •Allows better understanding of proton structure. Z/W+c jets tests PDF for c,s respectively.
- •Intrinsic Charm component inside the proton enhances $\sigma(Z+c)$ @ $\uparrow pt(Z)$.
- Background to some SM processes and in searches

Analysis strategy:

- Standard Z→ I⁺I⁻ , W⁺→I⁺v selection
- Isolated leptons with $p_T(1) > 20(26)$ GeV and $|\eta(1)| < 2.4$ from Z(W)
- anti- k_T jet: $p_T^{jet} > 25$ GeV & $|\eta^{jet}| < 2.5$

Z/W+heavy flavor selection:

- (a) Semileptonic decay of c/b hadrons: muon in a jet
- (b) D hadron inclusive decays: SV in a jet
- (c) $D^{*\pm}$, D^{\pm} exclusive decays


Samples:

DATA: 2012 8 TeV ($19.7 \text{ fb}^{-1} \pm 0.5$) for Z+c & W+c , 2016 13 TeV (35.7 fb^{-1}) for W+c

Signal MC: DY&W+jets generated w. MADGRAPH5@LO+PYTHIA6(PDF set CTEQ6L)

W+jets generated w. MADGRAPH5@NLO+PYTHIA8(PDF set NNPDF3.0)

σ(pp→Z+X) calculated at NNLO with FEWZ (PDF set MSTW2008NNLO)

Contributions from tt, diboson, W/Z+light processes (from simulations except tt from data for Z analysis).

Z: Missing transverse energy < 40 GeV (to reduce tt background).

W: $M_{T}(l, V) > 50 \text{ GeV}$

Data-MC differences in lepton trigger, identification and isolation efficiencies corrected (tag & probe method). Pileup events included in the MC.

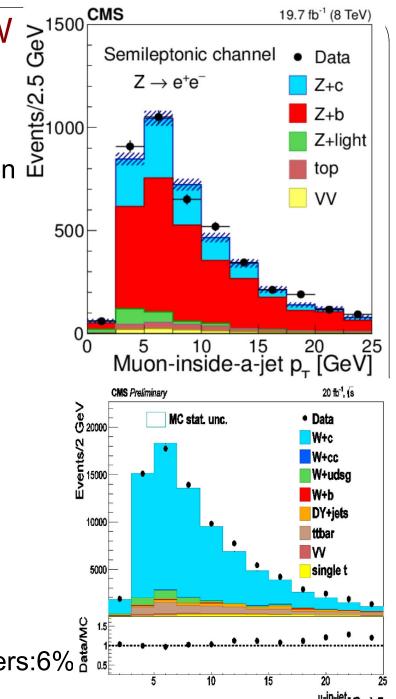
Semileptonic selection for Z and W analysis (SL channel)

µ inside a jet (taking part of a secondary

vertex for Z). This reduces the light contribution ப

more than standard b-tagging algorithms. • p_T^{μ} <25 GeV, with $p_T^{\mu}/p_T^{\text{jet}}$ <0.6, $|\eta^{\mu}|$ <2.5

• non-isolated,
$$I_{comb}/p_T^{\mu}>0.2$$


Semileptonic candidates: $4145 Z \rightarrow e^+e^ 5258 Z \rightarrow \mu^+\mu^-$

32K W → µ∪ 52K W → eu

Relative contributions:

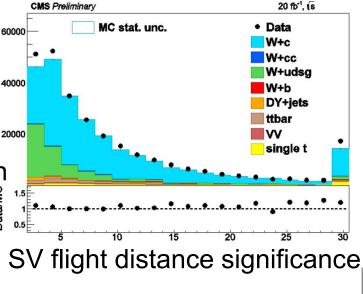
Z+c:25% Z+b:65% Z+light:5% Others:5%

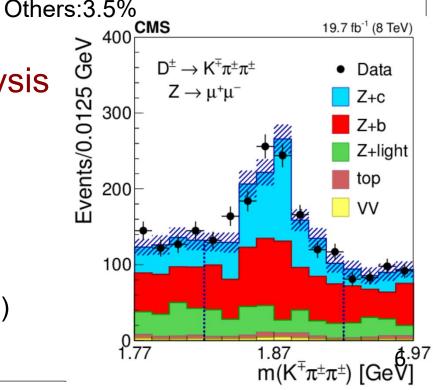
W+c:80% W+b:0.5% W+light:4% top:10% Others:6%

19.7 fb⁻¹ (8 TeV)

Inclusive D selection for W analysis (SV channel)

- Reconstructed secondary vertex in jet
- Vertex mass>0.55 GeV and SV flight distance
- significance>3.5 to reduce light jet contamination
- •In case of several jets with SV in the event, take ৰ


117K W → eu 131K W → µu W+c:75% W+b:0.5% W+light:15% top:6%


Exclusive D[±] Selection for Z analysis

Use jets with a 3 tracks secondary vertex & search for $D^{\pm} \rightarrow K^{\mp}\pi^{\pm}\pi^{\pm}$ resonant peak.

Non resonant bkg. in the signal region subtracted from the neighboring sidebands

 $490\pm48 D^{\pm} (Z \rightarrow \mu^{+}\mu^{-}) \quad 375\pm44 D^{\pm} (Z \rightarrow e^{+}e^{-})$ Z+c: ~60% Z+b: ~35% Others:<5%

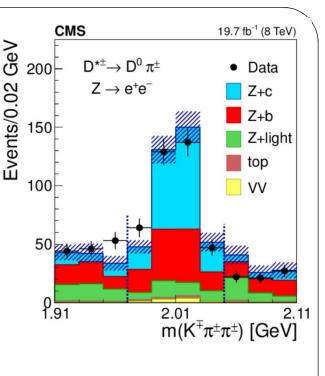
Exclusive D(2010)** Selection for Z (W) analysis (D*± channel)

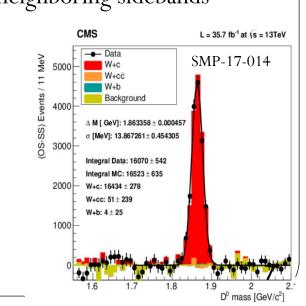
- $\cdot D^{*\pm} \rightarrow D^0 \pi_s^{\pm} [D^0 \rightarrow K^-\pi^+(+c.c.)]$ decay chain.
- Kaon: track with sign opposite to π_s
- •D⁰ vertex with $L_{xy}/\sigma(L_{xy})>3(0)$, D⁰ vertex prob.>0.05
- $p_T(D^*) > 0(4) \&\& p_T(D^*) / \sum p_{T(cone\ 0.4)} > 0(0.2)$ • $p_T(K) > 1.75(1)$, $p_T(\pi) > 0.75(1)$, $p_T(\pi_s) > 0.5(0.35)$ GeV
- $|\Delta R(D^*, jet)| < 0.5$, $|\Delta R(D^0, \pi_s)| < 0.1(0.15)$.
- $|m(D^0)-1.865|<100(35)$ MeV, $|\Delta m-145|<5$ (1) MeV
- Signal region : 1.97 < m(D*) < 2.05 GeV
- Sidebands : $0.06 < |m(D^{*\pm}) 2.01| < 0.12 \text{ GeV}$
- Non resonant background in the signal region subtracted from the neighboring sidebands

(wrong charge $D^0 \rightarrow K^-\pi^-(+c.c.)$ in W+c analysis)

After sideband subtraction:

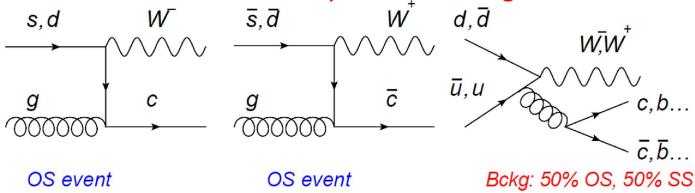
 $309 \pm 22 D^{*\pm}(Z \rightarrow \mu^{+}\mu^{-})$ $234 \pm 22 D^{*\pm}(Z \rightarrow e^{+}e^{-})$

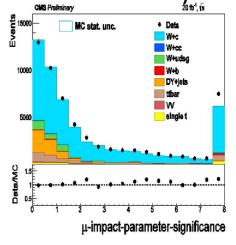

 $19.2 \pm 0.6 \times 10^3 D^{*\pm} (W \rightarrow \mu V)$

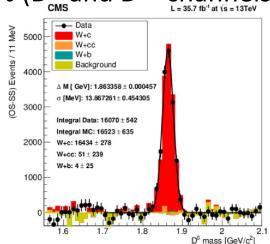

W+c:>98%

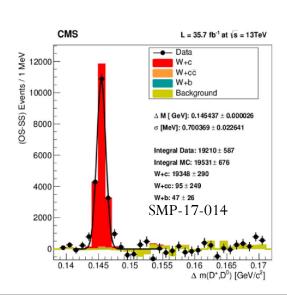
■ The simulation is reweighted to match the experimental values of

 $C \rightarrow D^{*\pm} \rightarrow D^0 \pi_s^{\pm} [D^0 \rightarrow K^- \pi^+] (PDG+L.Gladilin, Eur. Phys. J. C75(2015)19)$


Z+c:~65% Z+b:~30% Z+light:<1% Others(tt+VV):<4%

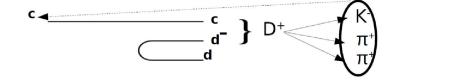

Selection of W+c samples


- •W \rightarrow ev, $\mu\nu$ plus jets with similar selection to Z+HF
- •Identification of heavy flavor jet: μ or SV in jet from D-hadron inclusive decays or $D^{*\pm}$
- •OS–SS subtraction to remove symmetric backgrounds

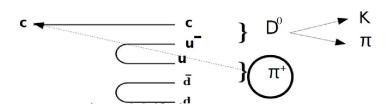


After OS-SS subtraction the purity in W+c of the resulting sample is > 80% (SL

and SV channels) and >98% (D_{cms}^{\pm} and $D^{*\pm}$ channels)



Charm charge determination of W+c samples


- •In the $SL(D^*)$ channel the charm charge is that of the $\mu(D^*)$
- In the SV channel, the charge of the SV vertex : $\sum_{q_{\text{tracks}}}$

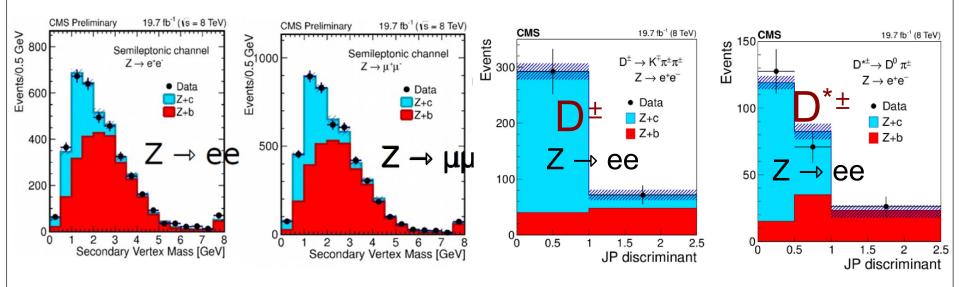
•If vertex-charge == 0 use charge of closest PV-track ($p_T > 0.3 \&\& \Delta R(track, SV vertex) < 0.1$).

Vertex-tracks

The sign of that track, the closest track to the $Charm_{hadron}$ in the process of fragmentation, tells you whether we have a c or a cbar :

•Charge definition: OS if charges of the SV and the lepton from the W decay are opposite.

$$\bullet OS : Q_{W \to e(\mu)} \neq Q_{SV}$$


$$SS: Q_{W \to e(\mu)} = Q_{SV}$$

Signal extraction (Z+c)

Z: Total # of observed Z+c/Z+b extracted from a χ^2 minimization fit of the Z+c/Z+b templates to the experimental distributions of vertex mass and JP discriminants (likelihood estimate of prob. of jet tracks to come from primary vertex)

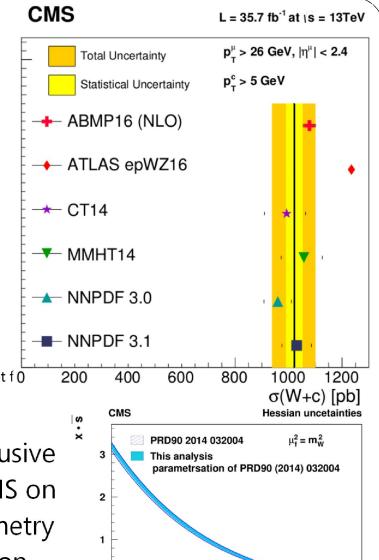
$$\chi^{2} = \sum_{i} \frac{(n_{i}^{data} - \mu_{Z+c} N_{i}^{Z+c} - \mu_{Z+b} N_{i}^{Z+b})}{(\sigma_{i}^{d})^{2} + (\sigma_{i}^{MC})^{2}}$$

 n_i = Number of events in data (after subtraction of remaining background from Z+light, tt and VV) N_i^{Z+c} , N_i^{Z+b} = \bar{N} umber of Z+c, Z+b Parameters to fit: μ_{z+c} & μ_{z+b}

c/b separation clearer in the D* mode (the soft pion comes from the PV for c \to D* and not for b \to B \to D*)

$$\mu_{z+c} \& \mu_{z+b}$$
 in the 0.9-1.1 range

Results: $\sigma(W+c)$ @ 13 TeV


Charm from D* channel

$$\sigma = N_{(W+D^*)data} / L B A_c \epsilon_c$$

 $A_c \epsilon_c = N_{W+D^*(reco)} / N_{W+c(gen)}$

$$\sigma(W+c)=1026\pm31(stat)^{+76}_{-72}(syst) pb$$

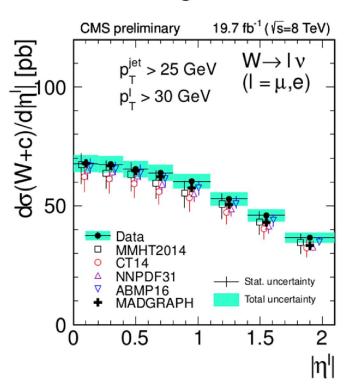
 $\sigma(W^++c)/\sigma(W^-+c)=0.968\pm0.055(stat)^{+0.015}_{-0.028}(syst)$

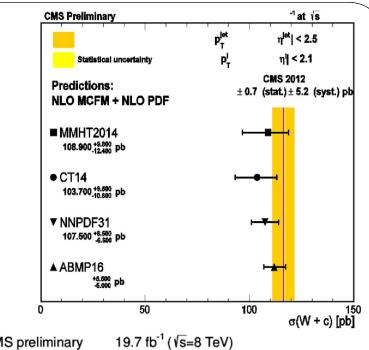
In good agreement with the theoretical predictions at NLO using different PDF sets (except f 0

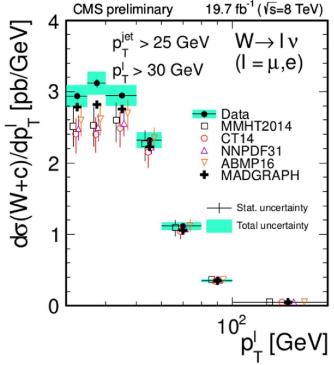
From a QCD analysis at NLO together with inclusive DIS measurements and earlier results from CMS on W+c production and the lepton charge asymmetry in W-production: The strange quark distribution and strangeness suppression factor agree with results from neutrino-scattering experiments.

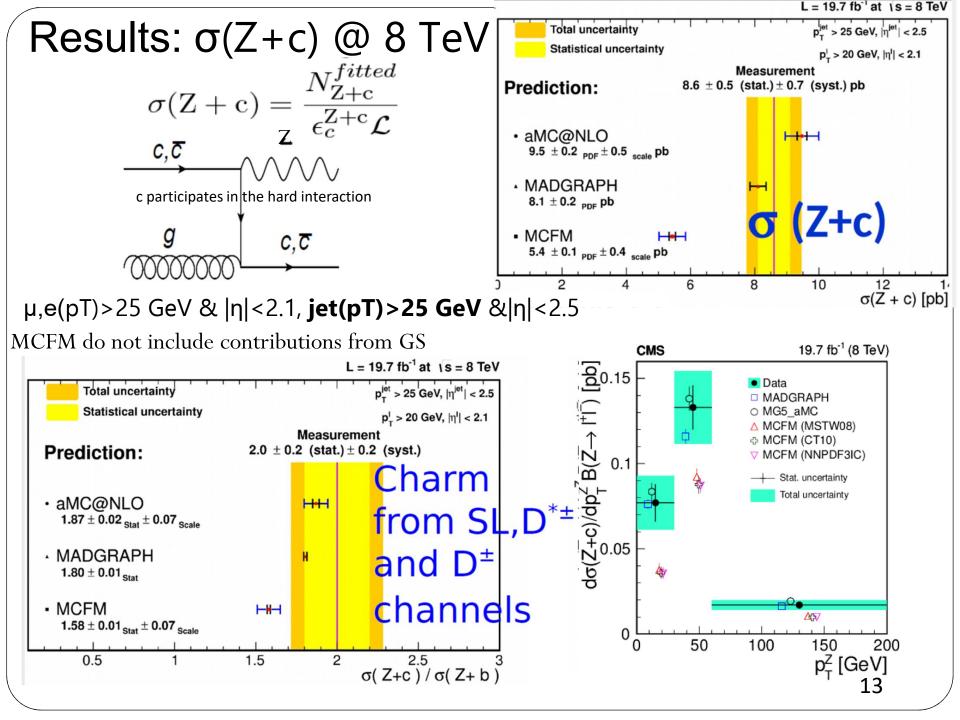
10 -1

Fract. uncert.


Results: σ(W+c) @ 8 TeV


Charm from SL and SV channels


$$\sigma = N_{\text{(W+c)data}} / L B A_{c} \epsilon_{c}$$
$$A_{c} \epsilon_{c} = N_{\text{W+c(reco)}} / N_{\text{W+c(gen)}}$$


$$\sigma(W + c) = 116.3 \pm 0.7 \text{(stat)} \pm 5.2 \text{(syst) pb}$$

 $\sigma(W^++c)/\sigma(W^-+c)=0.986\pm0.011(stat)\pm0.013(syst)$ In good agreement with the theoretical predictions at NLO using different PDF sets

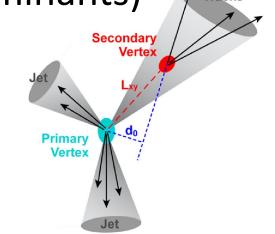
Conclusions

Evaluated W/Z + c associated production, inclusive and differential

Z in agreement with predictions from MadGraph5 amc@nlo (and Madgraph renormalized to a FEWZ calculation for Z+c). W in agreement with the theoretical predictions at NLO using different PDF sets

There has been a lot of improvement in the last decades and there is more to come from both , theoretical and experimental results

Back up


Z+c Selection: b/c separation (discriminants)

Vertex mass (for semileptonic mode)

$$M_{\text{vertex}}^{\text{corr}} = \sqrt{M_{\text{vertex}}^2 + p_{\text{vertex}}^2 \sin^2 \theta + p_{\text{vertex}} \sin \theta},$$

Correction included to account for unidentified neutral decay products

•JP (for D hadron modes): likelihood estimate of prob. of jet tracks to come from primary vertex

Displaced

Tracks

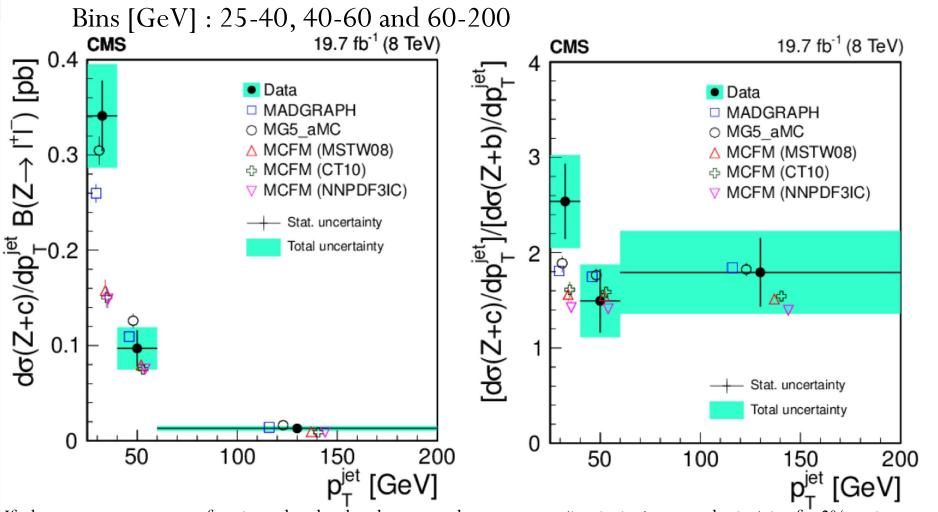
The larger the IP of a track the more inconsistent w.r.t. PV

Modeling strategy

- Z+c:

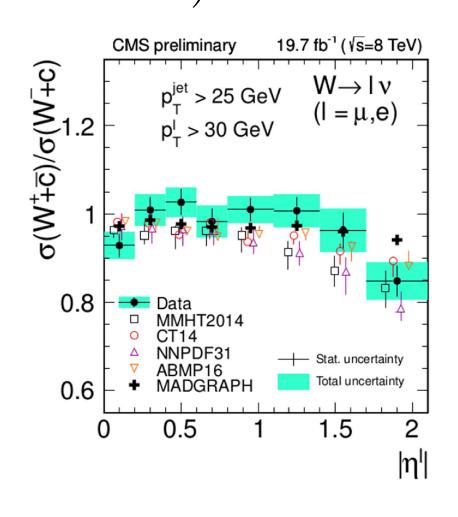
Shape: data driven (W+charm) [1st time]

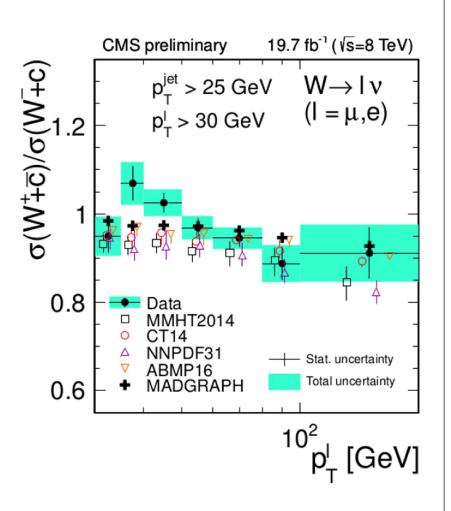
Normalization taken from MC after applying vertex-efficiency corrections


- Z+b:

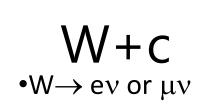
Shape: from MC but corrected with data (ttbar)

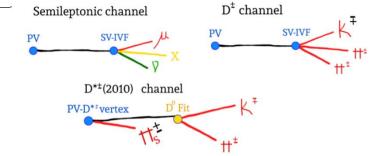
Normalization from MC after vertex-efficiency corrections


- Z+light and Dibosons: shape and normalization from MC
- ttbar: Data driven

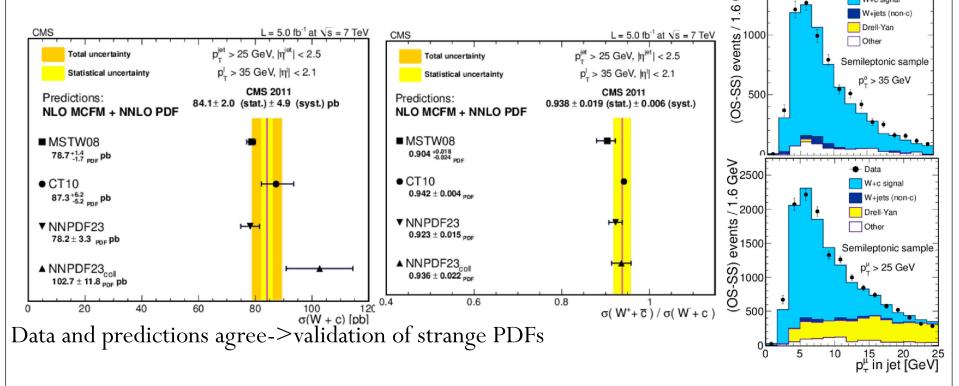

Differential cross sections as a function of $p_{T}^{\ jet}$

If the proton momentum fraction taken by the charm quark component (intrinsic + per-turbative) is of $\sim 2\%$, an increase in


•Comparison with MCFM (differential cross section ratio)



ss section determinatic


Semileptonic mode			
Channel	$N_{7,5}^{\rm signal}$	C _{Z+c} (%)	$\sigma(Z+c)$ [pb]
$Z \rightarrow e^+e^-$	1066 ± 95	0.63 ± 0.03	$8.6 \pm 0.8 \pm 1.0$
$Z \rightarrow \mu^{+}\mu^{-}$	1449 ± 144	0.81 ± 0.03	$9.1 \pm 0.9 \pm 1.0$
$Z \rightarrow \ell^+\ell^-$	$\sigma(Z+c) = 8.8 \pm 0.6 \text{ (stat)} \pm 1.0 \text{ (syst) pb}$		
Channel	$N_{ m Z\!+\!b}^{ m signal}$	C _{Z+b} (%)	$\sigma(Z+c)/\sigma(Z+b)$
$Z \rightarrow e^+e^-$	2606 ± 114	2.90 ± 0.08	$1.9 \pm 0.2 \pm 0.2$
$Z \rightarrow \mid \mu^{+}\mu^{-}$	3240 ± 147	3.93 ± 0.10	$2.2 \pm 0.3 \pm 0.2$
$Z \to \ell^+ \ell^-$	$\sigma(Z+c)/\sigma(Z+b) = 2.0 \pm 0.2 \text{ (stat)} \pm 0.2 \text{ (syst)}$		
D [±] mode			
Channel	$N_{ m Z+c}^{ m signal}$	C _{Z+c} (%)	$\sigma(Z+c)$ [pb]
$Z \rightarrow e^+e^-$	$\frac{N_{Z+c}}{276 \pm 55}$	0.13 ± 0.02	$10.9 \pm 2.2 \pm 0.9$
$Z \rightarrow \mu^{+}\mu^{-}$	316 ± 75	0.18 ± 0.02	$8.8 \pm 2.0 \pm 0.8$
$Z \rightarrow \ell^+\ell^-$	$\sigma(Z+c) = 9.7 \pm 1.5 \text{ (stat)} \pm 0.8 \text{ (syst) pb}$		
D*±(2010) mode			
Channel	$N_{ m Z+c}^{ m signal}$	C _{Z+c} (%)	$\sigma(Z+c)$ [pb]
$Z \rightarrow e^+e^-$	151 ± 31	0.11 ± 0.01	$7.3 \pm 1.5 \pm 0.5$
$Z \rightarrow \mu^{+}\mu^{-}$	247 ± 28	0.14 ± 0.01	$9.3 \pm 1.1 \pm 0.7$
$Z \rightarrow \ell^+\ell^-$	$\sigma(Z+c) = 8.5 \pm 0.9 \text{ (stat)} \pm 0.6 \text{ (syst) pb}$		
Combination			
$Z \to \ell^+ \ell^ \sigma(Z+c) = 8.8 \pm 0.5 \text{ (stat)} \pm 0.6 \text{ (syst) pb}$			

Identification of heavy flavor: μ in jet or D-hadron

The MCFM predictions for this process do not include contributions from gluon phitting into a cc part of the management of the management

First evidence for an asymmetry in the W^++c and W^-+c production.

Modeling strategy

Now that we have chosen the variables to separate the different contributions we need a way to model properly each of them

This is called template modeling and has two parts:

- Modeling properly the shape
- Accurate determination of tagging efficiency

```
- Z+c :
```

Shape: data driven (W+charm) [1st time]


Normalization taken from MC after applying vertex-efficiency corrections

- Z+b :
 - Shape: from MC but corrected with data (ttbar)
 - Normalization from MC after vertex-efficiency corrections
- Z+light and Dibosons: shape and normalization from MC
- ttbar: Data driven

Template (shape) modeling for Z+c

Comparison of c-jets from Z+c and W+c processes

(data from W+c: after subtraction of remaining (little) background)

- Agreement in general distributions (p_T^{jet} , N_{SV})
- Discriminant distributions (SV-mass and JP) W+c MC and Z+c MC agree
- JP prob W+c MC and W+c data agree and validates the Z+c MC description
- SV-mass W+c MC and W+c data do not agree

The shape is not well modeled by the W+c MC. We take the shape of SV-mass