Inclusive dijet photoproduction in UPCs at the LHC in NLO QCD

Michael Klasen

Institute for Theoretical Physics, University of Münster

13 July 2019

Work done with V. Guzey

GEFÖRDERT VOM

Motivation	Inclusi
0000	0000

Bayesian reweighting

Diffractive dijet production

Summary O

References

• V. Guzey, MK

Inclusive dijet photoproduction in UPCs at the LHC in NLO QCD Phys. Rev. C 99 (2019) 065202 [1811.10236]

0000	00000	00000	000
		Reterences	

V. Guzey, MK

Inclusive dijet photoproduction in UPCs at the LHC in NLO QCD Phys. Rev. C 99 (2019) 065202 [1811.10236]

V. Guzey, MK

Constraints on nuclear PDFs from dijet photoproduction at the LHC Eur. Phys. J. C 79 (2019) 396 [1902.05126]

Motivation 0000	Inclusive dijet production	Bayesian reweighting 00000

Diffractive dijet production

Summary 0

References

• V. Guzey, MK

Inclusive dijet photoproduction in UPCs at the LHC in NLO QCD Phys. Rev. C 99 (2019) 065202 [1811.10236]

• V. Guzey, MK

Constraints on nuclear PDFs from dijet photoproduction at the LHC Eur. Phys. J. C 79 (2019) 396 [1902.05126]

• V. Guzey, MK

Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams WG5 of the CERN Workshop [1812.06772]

Motivation 0000	Inclusive dijet production	Bayesian rev 00000
--------------------	----------------------------	-----------------------

Diffractive dijet production

Summary 0

References

• V. Guzey, MK

Inclusive dijet photoproduction in UPCs at the LHC in NLO QCD Phys. Rev. C 99 (2019) 065202 [1811.10236]

• V. Guzey, MK

Constraints on nuclear PDFs from dijet photoproduction at the LHC Eur. Phys. J. C 79 (2019) 396 [1902.05126]

• V. Guzey, MK

Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams WG5 of the CERN Workshop [1812.06772]

 V. Guzey, MK Diffractive dijet photoproduction in UPCs at the LHC in NLO QCD JHEP 1604 (2016) 158 [1603.06055]

Notivation	Inclusive dijet production	
000	00000	

Bayesian reweighting

Diffractive dijet production

Summary O

Motivation

A. Baltz, V. Guzey, MK et al., Phys. Rep. 458 (2008) 1

Ultraperipheral collisions (UPCs) of relativistic ions:

- Defined by large impact parameter $(b > 2 R_A)$
- Suppression of short-range strong interactions
- Interaction by quasi-real photons $ightarrow \gamma\gamma$ and γA scattering

Motivation	
0000	

Bayesian reweighting

Diffractive dijet production

Summary O

Motivation

A. Baltz, V. Guzey, MK et al., Phys. Rep. 458 (2008) 1

Ultraperipheral collisions (UPCs) of relativistic ions:

- Defined by large impact parameter $(b > 2 R_A)$
- Suppression of short-range strong interactions
- Interaction by quasi-real photons $ightarrow \gamma\gamma$ and γA scattering

Examples of physics processes:

- Quarkonium and dilepton pair production
- Light-by-light scattering
- Searches for BSM physics
- Includive dijet photoproduction

 x_a

x

 x_e

Nuclear parton distribution functions

K. Kovarik, P. Nadolsky, D. Soper, Rev. Mod. Phys. (to appear), 1905.06957

Definition:

Nuclear parton distribution functions

K. Kovarik, P. Nadolsky, D. Soper, Rev. Mod. Phys. (to appear), 1905.06957

Definition:

Regions:

- Shadowing: Surface nucleons absorb $q\bar{q}$ dipole, cast shadow
- Antishadowing: Imposed by momentum sum rule
- EMC effect: q_{ν} suppression due to nuclear binding, pions, quark clusters, Nachtmann scaling, short-range correlations, ...
- Fermi motion: Nucleons move, $F_2^A = \int_x^A dz f_N(z) F_2^N(\frac{x}{z})$

Inclusive dijet production 00000 Bayesian reweighting

Diffractive dijet production

Summary O

Current status of nuclear PDF uncertainties

K. Eskola, P. Paakinen, H. Paukkunen, C. Salgado, EPJC 77 (2017) 163

Inclusive dijet production

Bayesian reweighting

Diffractive dijet production

Summary O

Current status of nuclear PDF uncertainties

K. Eskola, P. Paakinen, H. Paukkunen, C. Salgado, EPJC 77 (2017) 163

nCTEQ15: 740 data points, 18 parameters, χ^2 /d.o.f. = 0.814 EPPS16: 1811 data points, 20 parameters, χ^2 /d.o.f. = 0.999

Inclusive dijet production

Bayesian reweighting

Diffractive dijet production

Summary O

Leading-twist model of nuclear shadowing

V. Guzey, L. Frankfurt, M. Strikman, Phys. Rep. 512 (2012) 255

Expansion in number of interacting nucleons:

a γ^{*} f_{1} f_{2} f_{3} f_{4} f_{4} f_{5} f_{7} $f_$

$$\begin{split} xf_{j/A}(x,\,Q_0^2) &= Axf_{j/N}(x,\,Q_0^2) - 8\pi A(A-1)\,\Re e\frac{(1-i\eta)^2}{1+\eta^2}B_{\rm diff}\int_x^{0.1}dx_{\mathbb{P}}\beta f_j^{D(3)}(\beta,\,Q_0^2,\,x_{\mathbb{P}}) \\ &\times \int d^2b\int_{-\infty}^{\infty}dz_1\int_{z_1}^{\infty}dz_2\rho_A(\vec{b},z_1)\rho_A(\vec{b},z_2)e^{i(z_1-z_2)x_{\mathbb{P}}m_N}e^{-\frac{A}{2}(1-i\eta)\sigma_{\rm soft}^j(x,Q_0^2)\int_{z_1}^{z_2}dz'\rho_A(\vec{b},z')} \end{split}$$

Inclusive dijet production •0000 Bayesian reweighting

Diffractive dijet production

Summary 0

Inclusive dijet photoproduction at the LHC (1)

V. Guzey, MK, Phys. Rev. C (in press), 1811.10236

Inclusive dijet production •0000 Bayesian reweighting

Diffractive dijet production

Summary 0

Inclusive dijet photoproduction at the LHC (1)

V. Guzey, MK, Phys. Rev. C (in press), 1811.10236

Hadronic/partonic cross sections related by photon flux/PDFs:

$$d\sigma(AB \to AB + 2\,\text{jets} + X) = \sum_{a,b} \int dy \int dx_{\gamma} \int dx_{A} f_{\gamma/A}(y) f_{a/\gamma}(x_{\gamma}, \mu^{2}) f_{b/B}(x_{A}, \mu^{2}) d\hat{\sigma}(ab \to \text{jets})$$

Inclusive dijet production •0000 Bayesian reweighting

Diffractive dijet production

Summary O

Inclusive dijet photoproduction at the LHC (1)

V. Guzey, MK, Phys. Rev. C (in press), 1811.10236

Hadronic/partonic cross sections related by photon flux/PDFs:

$$d\sigma(AB \to AB + 2\,\text{jets} + X) = \sum_{a,b} \int dy \int dx_{\gamma} \int dx_{A} f_{\gamma/A}(y) f_{a/\gamma}(x_{\gamma}, \mu^{2}) f_{b/B}(x_{A}, \mu^{2}) d\hat{\sigma}(ab \to \text{jets})$$

Photon flux for relativistic point-like charge Z:

$$f_{\gamma/A}(y) = \frac{2\alpha Z^2}{\pi} \frac{1}{y} \left[\zeta \kappa_0(\zeta) \kappa_1(\zeta) - \frac{\zeta^2}{2} (\kappa_1^2(\zeta) - \kappa_0^2(\zeta)) \right]$$

with $\zeta = ym_p b_{\min}$ (no strong int. for $b > b_{\min} = 2.1 R_{\rm Pb} = 14.2 \,\mathrm{fm}$)

Inclusive dijet production $0 \bullet 000$

Bayesian reweighting

Diffractive dijet production

Summary O

Inclusive dijet photoproduction at the LHC (2)

V. Guzey, MK, Phys. Rev. C (in press), 1811.10236

Theoretical approach:

- Partonic cross section calculated in NLO QCD
- Scale choice: $\mu_r = \mu_f = 2E_{T,1}$ (NLO = LO, NLO' = 0)
- Photon PDFs: GRV HO
- Nuclear PDFs: nCTEQ15, $\Delta \sigma = \frac{1}{2} \sqrt{\sum_{k=1}^{31} (\sigma(f_k) \sigma(f_{k+1}))^2}$

Inclusive dijet production $0 \bullet 000$

Bayesian reweighting

Diffractive dijet production

Summary O

Inclusive dijet photoproduction at the LHC (2)

V. Guzey, MK, Phys. Rev. C (in press), 1811.10236

Theoretical approach:

- Partonic cross section calculated in NLO QCD
- Scale choice: $\mu_r = \mu_f = 2E_{T,1}$ (NLO = LO, NLO' = 0)
- Photon PDFs: GRV HO
- Nuclear PDFs: nCTEQ15, $\Delta \sigma = \frac{1}{2} \sqrt{\sum_{k=1}^{31} (\sigma(f_k) \sigma(f_{k+1}))^2}$

Experimental conditions:

- Anti- k_T algorithm, R = 0.4
- $E_{T,1} > 20$ GeV, $E_{T,2} > 15$ GeV, $H_T = \sum_i E_{T,i} > 35$ GeV
- Rapidities: $|\eta_{1,2}| < 4.4$
- Combined jet mass: $m_{
 m jets} > 35~
 m GeV$

Inclusive dijet production 00000

Bayesian reweighting

Diffractive dijet production

Summary O

Comparison to preliminary ATLAS data (1)

A. Angerami et al. [ATLAS Coll.], ATLAS-CONF-2017-011

Excellent agreement. NB: Data not unfolded for detector response.

Bayesian reweighting

Diffractive dijet production

Summary O

Comparison to preliminary ATLAS data (2)

A. Angerami et al. [ATLAS Coll.], ATLAS-CONF-2017-011

Excellent agreement, also for z_{γ} distribution.

on Inclusive dijet production Bayesian reweighti

Diffractive dijet production

Summary O

Inclusive dijet photoproduction at the HL-LHC

Z. Citron, V. Guzey, I. Helenius, MK, H. Paukkunen et al., 1812.06772

Large potential for improvement in nuclear shadowing region. Resolved photon PDF uncertainty at low p_T and in EMC region.

Inclusive dijet production

Bayesian reweighting

Diffractive dijet production

Summary

Bayesian reweighting study of impact on nPDFs (1)

V. Guzey, MK, Eur. Phys. J. C 79 (2019) 396

Central fits $f_{i/A}^0$ (parton j) and error sets $f_{i/A}^{i\pm}$ (i = 1...2N):

- nCTEQ15: N = 16 (based on CTEQ6.1M)
- EPPS16: *N* = 20 + 28 (nuclear + proton)

Inclusive dijet production

Bayesian reweighting

Diffractive dijet production

Summary

Bayesian reweighting study of impact on nPDFs (1) V. Guzey, MK, Eur. Phys. J. C 79 (2019) 396

Central fits $f_{j/A}^0$ (parton j) and error sets $f_{j/A}^{i\pm}$ ($i = 1 \dots 2N$):

- nCTEQ15: N = 16 (based on CTEQ6.1M)
- EPPS16: *N* = 20 + 28 (nuclear + proton)

Replicas ($k = 1 ... N_{rep}$, $N_{rep} = 10,000$):

$$f_{j/A}^{k}(x,Q^{2}) = f_{j/A}^{0}(x,Q^{2}) + \frac{1}{2} \sum_{i=1}^{N} \left[f_{j/A}^{i+}(x,Q^{2}) - f_{j/A}^{i-}(x,Q^{2}) \right] R_{ki}$$

with normally distributed random number R_{ki} ($\mu = 0, \sigma = 1$).

Inclusive dijet production

Bayesian reweighting

Diffractive dijet production

Summary

Bayesian reweighting study of impact on nPDFs (1) V. Guzey, MK, Eur. Phys. J. C 79 (2019) 396

Central fits $f_{j/A}^0$ (parton j) and error sets $f_{j/A}^{i\pm}$ ($i = 1 \dots 2N$):

- nCTEQ15: N = 16 (based on CTEQ6.1M)
- EPPS16: *N* = 20 + 28 (nuclear + proton)

Replicas ($k = 1 ... N_{rep}$, $N_{rep} = 10,000$):

$$f_{j/A}^{k}(x,Q^{2}) = f_{j/A}^{0}(x,Q^{2}) + \frac{1}{2} \sum_{i=1}^{N} \left[f_{j/A}^{i+}(x,Q^{2}) - f_{j/A}^{i-}(x,Q^{2}) \right] R_{ki}$$

with normally distributed random number R_{ki} ($\mu = 0, \sigma = 1$).

Pseudodata:

- NLO QCD prediction $d\sigma^0/dx_A$ with central PDFs $f_{i/A}^0$
- $N_{\text{data}} = 9$ bins in x_A

Inclusive dijet production 00000 Bayesian reweighting 00000 Diffractive dijet production

Summary

Bayesian reweighting study of impact on nPDFs (2)

V. Guzey, MK, Eur. Phys. J. C 79 (2019) 396

 χ^2 test function:

$$\chi_k^2 = \sum_{j=1}^{N_{\text{data}}} rac{(d\sigma^0/dx_A - d\sigma^k/dx_A)^2}{\sigma_j^2}$$

with assumed uncertainty $\sigma_j = \epsilon d\sigma^0/dx_A$ and $\epsilon = 0.05 \dots 0.2$.

Inclusive dijet production 00000 Bayesian reweighting 00000 Diffractive dijet production

Summary

Bayesian reweighting study of impact on nPDFs (2)

V. Guzey, MK, Eur. Phys. J. C 79 (2019) 396

 χ^2 test function:

$$\chi^2_k = \sum_{j=1}^{N_{\mathrm{data}}} rac{(d\sigma^0/dx_A - d\sigma^k/dx_A)^2}{\sigma^2_j}$$

with assumed uncertainty $\sigma_j = \epsilon d\sigma^0/dx_A$ and $\epsilon = 0.05 \dots 0.2$.

Weights $(\sum_k w_k = N_{rep})$:

$$w_k = rac{e^{-rac{1}{2}\chi_k^2/T}}{rac{1}{N_{
m rep}}\sum_i^{N_{
m rep}}e^{-rac{1}{2}\chi_i^2/T}}$$

with tolerance T = 35(52) for nCTEQ15 (EPPS16).

Inclusive dijet production 00000 Bayesian reweighting

Diffractive dijet production

Summary

Bayesian reweighting study of impact on nPDFs (3)

V. Guzey, MK, Eur. Phys. J. C 79 (2019) 396

Reweighted nPDFs and their uncertainties:

$$\begin{split} \langle f_{j/A}(x,Q^2) \rangle_{\mathrm{new}} &= \frac{1}{N_{\mathrm{rep}}} \sum_{k=1}^{N_{\mathrm{rep}}} w_k f_{j/A}^k(x,Q^2) \,, \\ \delta \langle f_{j/A}(x,Q^2) \rangle_{\mathrm{new}} &= \sqrt{\frac{1}{N_{\mathrm{rep}}} \sum_{k=1}^{N_{\mathrm{rep}}} w_k \left(f_{j/A}^k - \langle f_{j/A}(x,Q^2) \rangle_{\mathrm{new}} \right)^2} \end{split}$$

Inclusive dijet production 00000 Bayesian reweighting

Diffractive dijet production

Summary

Bayesian reweighting study of impact on nPDFs (3)

V. Guzey, MK, Eur. Phys. J. C 79 (2019) 396

Reweighted nPDFs and their uncertainties:

$$egin{array}{rcl} \langle f_{j/\mathcal{A}}(x,Q^2)
angle_{ ext{new}} &=& \displaystyle rac{1}{N_{ ext{rep}}} \sum_{k=1}^{N_{ ext{rep}}} w_k f_{j/\mathcal{A}}^k(x,Q^2) \,, \ \\ \delta \langle f_{j/\mathcal{A}}(x,Q^2)
angle_{ ext{new}} &=& \displaystyle \sqrt{\displaystyle rac{1}{N_{ ext{rep}}} \sum_{k=1}^{N_{ ext{rep}}} w_k \left(f_{j/\mathcal{A}}^k - \langle f_{j/\mathcal{A}}(x,Q^2)
angle_{ ext{new}}
ight)^2} \,. \end{array}$$

Effective number of contributing replicas:

$$N_{
m eff} = \exp\left[rac{1}{N_{
m rep}}\sum_k^{N_{
m rep}} w_k \ln(N_{
m rep}/w_k)
ight]$$

Inclusive dijet production 00000 Bayesian reweighting

Diffractive dijet production

Summary O

Impact of future ATLAS data on nPDFs

V. Guzey, MK, Eur. Phys. J. C 79 (2019) 396

nCTEQ15(np) uncertainties reduced by (more than) factor of two.

nclusive dijet production

Bayesian reweighting

Diffractive dijet production

Summary O

Effective number of contributing replicas

V. Guzey, MK, Eur. Phys. J. C 79 (2019) 396

ϵ	$N_{ m eff}(nCTEQ15)$	$N_{ m eff}(nCTEQ15np)$	$N_{\rm eff}({\sf EPPS16})$
0.05	4407	3982	5982
0.1	7483	7742	8727
0.15	8870	9107	9555
0.2	9464	9607	9818

nclusive dijet production

Bayesian reweighting

Diffractive dijet production

Summary O

Diffractive dijet photoproduction at the LHC

V. Guzey, MK, JHEP 1604 (2016) 158

Cross sections related by Pomeron flux/diffractive PDFs:

$$d\sigma = \sum_{a,b} \int dt \int dx_{\mathbf{P}} \int dz_{\mathbf{P}} \int dy \int dx_{\gamma} f_{\gamma/A}(y) f_{a/\gamma}(x_{\gamma}, \mu^2) f_{b/p}^{D(4)}(x_{\mathbf{P}}, z_{\mathbf{P}}, t, \mu^2) d\hat{\sigma}_{ab \rightarrow jets}^{(n)}$$

Photon flux: $f_{\gamma/A}(x) = \int d^2 b \Gamma_{AA}(b) f_{\gamma/A}(x, b)$

Probability for the nuclei to not interact strongly (Glauber model):

$$\Gamma_{AA}(b) = \exp\left(-\sigma_{NN}^{\text{tot}}(s) \int d^2 \vec{b}_1 T_A(\vec{b}) T_A(\vec{b}_1 - \vec{b})\right)$$

Inclusive dijet production 00000 Bayesian reweighting

Diffractive dijet production 000 Summary O

Photon spectrum in lead ions

V. Guzey, MK, JHEP 1604 (2016) 158

Inclusive dijet production 00000 Bayesian reweighting

Diffractive dijet production

Summary O

Diffractive photoproduction of dijets

V. Guzey, MK, JHEP 1604 (2016) 158

Mo	tiva	tion
00	00	

Bayesian reweighting

Diffractive dijet production

Summary

Summary

Photoproduction in UPCs:

- Strong interactions (short range) suppressed
- Final states: Dileptons, quarkonia, dijets, ...

N	lo	ti	V	at	io	n	
0	0	0	0				

Bayesian reweighting

Diffractive dijet production

Summary

Summary

Photoproduction in UPCs:

- Strong interactions (short range) suppressed
- Final states: Dileptons, quarkonia, dijets, ...

Inclusive dijets:

- NLO QCD agrees with ATLAS data (H_T , x_A , z_γ)
- NB: Data not yet unfolded for detector effects
- Bayesian reweighting study
- Reduction of nPDF uncertainties by at least a factor of two

M	ot	iν	a	ti	0	n	
0)				

Bayesian reweighting

Diffractive dijet production

Summary

Summary

Photoproduction in UPCs:

- Strong interactions (short range) suppressed
- Final states: Dileptons, quarkonia, dijets, ...

Inclusive dijets:

- NLO QCD agrees with ATLAS data (H_T , x_A , z_γ)
- NB: Data not yet unfolded for detector effects
- Bayesian reweighting study
- Reduction of nPDF uncertainties by at least a factor of two Diffractive dijets:
 - Photon flux in lead ions calculated with Glauber model
 - Diffractive nPDFs unknown ightarrow assume LT nuclear shadowing
 - First NLO QCD predictions, including scale uncertainties