Light neutral meson production in the era of precision physics at the LHC

Mike Sas
ALICE Collaboration
Utrecht University & NIKHEF
July 11, 2019
Big questions in heavy-ion physics

- What are the different particle production mechanisms across different system sizes?
- Can we find the onset of the QGP?
- Is a QGP droplet formed in small systems?

\[N_{\text{particles}} \sim 10^1 \] \hspace{2cm} \[N_{\text{particles}} \sim 10^2 \] \hspace{2cm} \[N_{\text{particles}} \sim 10^4 \]
Why measure neutral mesons?

\[\pi^0 \rightarrow \gamma\gamma, \quad \eta \rightarrow \gamma\gamma, \quad \omega \rightarrow \pi^0\gamma, \quad \ldots \]

- Straightforward identification \((M_{\text{inv}})\) → study the particle production mechanisms
- Main background for direct photons → precise neutral mesons lead to precise direct photons

pp

Jet production
Underlying event studies

p–Pb

Cold nuclear matter effects
Multiplicity dependence

Pb–Pb

QGP effects
Centrality dependence
Photons in ALICE

Photon Conversion Method (PCM)
- ITS and TPC
- $|\eta| < 0.9$ and $0^{\circ} < \varphi < 360^{\circ}$
- $E_{\gamma} > 100$ MeV, $E_{\pi^0} > 300$ MeV
- conversion probability $\sim 8\%$

PHOS calorimeter
- PbWO$_4$ crystals (2.2 cm x 2.2 cm, at 4.6 m)
- $|\eta| < 0.12$ and $260^{\circ} < \varphi < 320^{\circ}$
- $E_{\gamma} > 200$ MeV, $E_{\pi^0} > 400$ MeV

EMCal calorimeter
- Pb-scintillator towers (6 cm x 6 cm, at 4.28 m)
- $|\eta| < 0.7$ and $80^{\circ} < \varphi < 180^{\circ}$
- $E_{\gamma} > 700$ MeV, $E_{\pi^0} > 1.4$ GeV

Centrality estimators
- V0M (V0A & V0C), measures forward multiplicity in central barrel
- ZDC (ZNA & ZNC), measures forward neutrons at large distance
Neutral meson reconstruction in ALICE

Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods

\[\pi^0 \]

\[\eta \]

Counts

ALICE performance

π^0: $0.5 \text{ GeV/c} < p_\pi < 0.6 \text{ GeV/c}$

Raw real events

Mixed event BG

Remain. BG

BG subtracted

Fit

ALICE performance

η: $1.1 \text{ GeV/c} < p_\eta < 1.4 \text{ GeV/c}$

Raw real events

Mixed event BG

Remain. BG

BG subtracted

Fit

Raw real events

Mixed event BG

Remain. BG

BG subtracted

Fit

ALI-PUB-135823

ALI-PUB-135787

Neutral meson reconstruction in ALICE

Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods

![Graphs showing π^0 and η distributions](attachment:image.png)
Neutral meson reconstruction in ALICE

Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods
Neutral meson reconstruction in ALICE

Analysis strategy:

1. Reconstruct the photons
2. Obtain the meson raw yield: integrate M_{inv} distributions
3. Correct raw yield for efficiency, acceptance, feed-down from secondaries
4. Combine the different reconstruction methods

Data/TCM fit

Neutral mesons in pp collisions

Main reasons for study:
- Fragmentation & in-jet production
- Contribution underlying event
- Main background for γ_{direct}

![Graphs showing data for π^0 and η mesons](arXiv:1708.08745, Eur. Phys. J. C 78 (2018) 263)
Neutral mesons in pp collisions

Main reasons for study:

- Fragmentation & in-jet production
- Contribution underlying event
- Main background for γ_{direct}

π^0 model comparisons:

- PYTHIA and NLO overpredict the production
- More differential studies can disentangle the jet and UE components
Neutral mesons in p–Pb collisions

π^0 & η

Ratio to theory

η/π^0

Minimum Bias production

- Model comparisons show only consistency for limited \(p_T\) ranges
- Full Run 1 + Run 2 result promises to provide very detailed studies

Neutral mesons in p–Pb collisions

V0A centrality estimation
- Significant change of slope at low p_T
- No significant centrality dependence in the η/π^0 ratio
Neutral mesons in p–Pb collisions

V0A centrality estimation

- Significant change of slope at low p_T
- No significant centrality dependence in the η/π^0 ratio

Nuclear modification factor:

$$Q_{pA} = \frac{dN_{pA}^{dN}}{dT_{pA}} / \langle T_{pA} \rangle \frac{d\sigma_{pp}}{dp_T}$$

Mike Sas (Utrecht University & NIKHEF)
Neutral mesons in p–Pb collisions

V0A centrality estimation
- Significant change of slope at low p_T
- No significant centrality dependence in the η/π^0 ratio

ZNA centrality estimation
- Zero-degree calorimeter on A (Pb) side
- Measures energy of spectator nucleons, 114 m from interaction point
- Less centrality dependence observed wrt. V0A centrality estimation

Nuclear modification factor:

$$Q_{PA} = \frac{dN_{PA}^{dN}}{dp_T} \frac{<T_{PA}^{dp}d\sigma^{pp}dp_T}{<T_{PP}^{dp}d\sigma^{pp}dp_T}$$

Mike Sas (Utrecht University & NIKHEF)
Neutral mesons in Pb–Pb collisions

\[\pi^0 \]

Ratio to theory

- Model comparisons show consistency for limited \(p_T \) ranges
- Basis for direct photon background subtraction

V0A centrality estimation

Model comparisons show consistency for limited \(p_T \) ranges
Basis for direct photon background subtraction
Neutral mesons in Pb–Pb collisions

V0A centrality estimation

- Model comparisons show consistency for limited p_T ranges
- Basis for direct photon background subtraction

Nuclear modification

$$R_{AA} = \frac{dN_{AA}^{/p_T}}{<T_{AA}> d\sigma_{pp}^{/p_T}}$$

- Strong suppression for central collisions
- Full Run 2 result promises to provide detailed studies
Summary and outlook

Neutral mesons spectra measurements provide us with information on:

- Particle production mechanisms, by comparing to model calculations
- Decay photon background for direct photon measurements
Summary and outlook

Neutral mesons spectra measurements provide us with information on:

- Particle production mechanisms, by comparing to model calculations
- Decay photon background for direct photon measurements

Where do the next opportunities lie?

1. Overall reducing the uncertainties in the measurements, by:
 - Using full Run 1+2 statistics → factor $\sim 2 - 6$ increase
 - Combine all neutral meson reconstruction methods

2. additional differential studies:
 - Vs. multiplicity
 - Vs. event shapes (S_T, S_O)
 - In-jet production

3. Direct photons → under which conditions do we measure an excess of low p_T direct photons?
Summary and outlook

Neutral mesons spectra measurements provide us with information on:

- Particle production mechanisms, by comparing to model calculations
- Decay photon background for direct photon measurements

Where do the next opportunities lie?

1. Overall reducing the uncertainties in the measurements, by:
 - Using full Run 1+2 statistics \rightarrow factor $\sim 2 - 6$ increase
 - Combine all neutral meson reconstruction methods

2. Additional differential studies:
 - Vs. multiplicity
 - Vs. event shapes (S_T, S_O)
 - In-jet production

3. Direct photons \rightarrow under which conditions do we measure an excess of low p_T direct photons?

Thanks for your attention.
The ALICE detector

- ITS
- TPC
- EMCal
- PHOS