boson + jet Recent jet results in heavy-ion collisions with CMS Inna Kucher Laboratoire Leprince-Ringuet (Palaiseau, France) EPS 2019 11 July 2019 ## Jets as a probe of the QGP Parton energy loss is related to the thermodynamical and transport properties of the Quark Gluon Plasma Inclusive and di-jet measurements are good for discovering physics effect: e.g dijet asymmetry of leading and subleading jets All jets lose energy while traversing the QGP → controlled configuration of the initial hard scattering is needed ## Boson + jets as a probe of the QGP Parton energy loss is related to the thermodynamical and transport properties of the Quark Gluon Plasma #### Bosons ($Z \rightarrow l^+l^-/\gamma$): - Do not interact strongly with the QGP - In "boson + jets" configuration they fix the recoiling jet kinematics (LO) - At LHC energies enhanced quark jets sample : $q(\bar{q}) + g o Z(\gamma) + q(\bar{q})$ #### CMS measured: ## CMS detector: photons and electrons Photons and electrons Photons* in ECAL barrel: $|\eta| < 1.44$ Electrons* in ECAL barrel and endcaps : $|\eta| < 2.5$ ## CMS detector: jets jets Jets* in $|\eta| < 1.6$ ### CMS detector: muons #### muons ### Muons* in $|\eta|$ < 2.4 * objects acceptance for the analysis shown in this talk ## Object selections **Electrons**: $|\eta| < 2.5$, $p_{\tau} > 20$ GeV/c, ECAL barrel-endcap gap excluded **Muons**: $|\eta|$ < 2.4 , p_T > 10 GeV/c **Z boson**: $e^+e^-/\mu^+\mu^-$ with $p_T > 40$ GeV/c, $70 < M_{inv} < 110$ GeV/c² Each Z candidate is paired with all the jets in the event **Photons**: $|\eta|$ <1.44 , p_T > 40 GeV , <u>isolation</u> (SumIso^{UE-sub}) < 1 GeV/c The highest p_{τ} isolated photon is paired with all the jets in the event **Jets**: anti-kT algorithm with R = 0.3, $|\eta|$ < 1.6, p_{τ} > 30 GeV/c Jets reconstructed within $\Delta R < 0.4$ from lepton are rejected to eliminate jet energy contamination by leptons coming from Z All "boson+jet" pairs are selected , to suppress initial and final state radiation effect \to look into back-to-back pairs only $\Delta\phi_{iZ(\gamma)}>7\pi/8$ ## Z+jet correlations What is the amount of energy lost in jet cone? \rightarrow Z - jet p_T balance jet Back-to-back pairs : $$\Delta\phi_{jZ} > 7\pi/8$$ #### PbPb 0-30% collisions: #### balance shifts to lower values wrt pp The results are not unfolded for detector effects \rightarrow pp data are smeared to simulate poor resolution due to UE fluctuations in PbPb data ## Z+jet correlations #### JEWEL model – perturbative framework for jet quenching: - No energy loss case (Pythia6): poor agreement with pp - Energy loss case: consistent with PbPb data Hybrid model - weak coupling = (high- Q^2) jet evolution, as it would be in vaccum; strong coupling = (low- Q^2) interactions between parton shower and medium: - No energy loss case (Pythia8): describes reasonably well pp - Energy loss case: strong coupling appears to be the closest to PbPb data Guylassy-Levai-Vitev (GLV) model – energy loss via out of cone radiation and collisional energy dissipation : - No energy loss case (Pythia8): describes reasonably well pp - Energy loss case: strength of the quenching g = 2.2 seems to be favored by PbPb data ## Z+jet correlations Mean value of the balance ($< X_{iZ} >$) vs p_T : → For full pT range it is lower in PbPb wrt pp Probability to find an associated jet per $Z(R_{i7})$: - \rightarrow Overall decrease in PbPb as jet falls below p_T threshold - \rightarrow pp and PbPb difference ~constant with p₊: relatively smaller fraction of jets is lost in PbPb for larger initial parton energies Both are the indication of the jet energy loss in QGP ### Isolated-photon+jet correlations In PbPb central events balance shifts to lower values wrt pp Consistent with Z-jet measurement Mean value of the balance ($< X_{iv}>$) Probability to find a jet partner for photon (R_{iv}) In 0-30% PbPb suppression (compared to smeared pp) of both $\langle X_{iz} \rangle$ and R_{iz} is observed ## Isolated-photon+jet correlations Main features of x_{Jv} distributions are reproduced by all models ### Jet fragmentation Fragmentation pattern wrt p_T of the reconstructed jet (jet that may have lost energy via interactions with the medium) Track projected to the jet axis $$\xi^{jet} = \ln \frac{-|\vec{p}|^{jet}|^2}{\vec{p}|^{trk} \cdot \vec{p}|^{jet}}$$ 50-100% PbPb consistent with pp 0-10% PbPb: - enhancement for $\xi_{jet} > 2.5$ ($p_T^{trk} < 2.5$ GeV) - Slight suppression at $0.5 < \xi_{jet} < 2.5$ (2.5 < $p_{\tau}^{trk} < 18 \text{ GeV}$) ## Jet fragmentation ### Fragmentation pattern wrt p_{τ} of the initial parton **before energy loss occurred** Track projected to the photon axis $$\xi_T^{\gamma} = \ln \frac{-|\vec{p}_T^{\gamma}|^2}{\vec{p}_T^{trk} \cdot \vec{p}_T^{\gamma}}$$ 50-100% PbPb consistent with pp 0-10% PbPb: - enhancement for $\xi_{\tau}^{\gamma} > 3$ ($p_{\tau}^{trk} < 3$ GeV) - suppression at 0.5 < ξ_{T}^{Y} < 3 (3 < p_{T}^{trk} < 36 GeV) ## Jet shapes of isolated photon-tagged jets Phys. Rev. Lett. 122 (2019) 152001 Jet shapes is an observable for studying distribution of parton energy in radial direction $$\rho(r) = \frac{1}{\delta r} \frac{\sum_{jets} \sum_{r_a < r < r_b} (p_T^{trk}/p_T^{jet})}{\sum_{jets} \sum_{0 < r < r_f} (p_T^{trk}/p_T^{jet})}$$ $\rho(r)$ is normalized to unity for r = 0.3 $$r = \sqrt{(\eta^{jet} - \eta^{trk})^2 + (\phi^{jet} - \phi^{trk})^2}$$ How the jet p_{τ} is distributed in a direction transverse to the jet axis? ## Jet shapes of isolated photon-tagged jets Phys. Rev. Lett. 122 (2019) 152001 ### Summary • Energy loss manifests itself in the balance shift to lower values and overall decrease of " Z/γ + jet" pairs "γ + jet" fragmentation functions: parton showers emerging from the QGP contain more lower-energy particles "γ + jet" jet shapes: a direct observation of the jet broadening in the QGP # Backup slides ## Dijet p⊤ balance If **no energy loss**, typically two jets have equal pT wrt the beam axis → ~ **back-to-back** In PbPb more typical picture is highly unbalanced dijets How to quantify the effect? ### Dijet asymmetry in CMS ### Dijet asymmetry of leading and subleading jets $p_{T,1} > 120 \text{ GeV}, \ p_{T,2} > 50 \text{ GeV}$ $\Delta \phi > 2\pi/3$ "no energy loss" : peak ~ 0.1 PbPb data : peak ~ 0.3 #### Fraction of all events with "balanced" jets #### CMS, PRC84 (2011) 024906 In the most central PbPb ~ 2 times less "balanced" dijets High degree of jet quenching ## Z-jet correlations Distributions of the azimuthal angle difference $\Delta\phi_{jZ}$ between the Z boson and the jet No difference in the angular difference between PbPb and pp ## Z-jet correlations ### Comparison pp and PbPb to models: ## Photon-jet correlations Distributions of the azimuthal angle difference $\Delta\phi_{j\gamma}$ between the photon and the jet No difference in the angular difference between PbPb and pp ## Jet fragmentation function in ATLAS Distribution of charged-particle p_T inside the jet (fragmentation function) : $$D(p_T) = \frac{1}{N_{jet}} \frac{\Delta N(p_T)}{\Delta p_T}$$ ATLAS, Phys. Rev. C 98 (2018) 024908 ## Jet fragmentation function in ATLAS Distribution of charged-particle p_T inside the jet (fragmentation function) : $$D(p_T) = \frac{1}{N_{jet}} \frac{\Delta N(p_T)}{\Delta p_T}$$ $$R_{D(p_T)} = \frac{D(p_T)_{PbPb}}{D(p_T)_{pp}}$$ ### PbPb compared to pp: - → more soft particles due to interaction with the medium - \rightarrow suppression at mid p_T - → enhancement at high p_T: consistent with quenching dependence on quark/gluon initiated jets #### Gluon vs quark jet: - → larger charged hadron multiplicity - → contain more softer particle - → wider #### ATLAS, Phys. Rev. C 98 (2018) 024908 ### Photon+jet pT balance in ATLAS What is the amount of energy lost by the jet? Balance: $$X_{J\gamma} = \frac{p_{T,jet}}{p_T^{\gamma}}$$ ATLAS, Phys. Lett. B 789 (2019) 167 The jet energy decrease with centrality - in peripheral events: a peak-like structure is present in the same position as in pp - in the most central events : strongly modified, no peak, jet energy decrease ## Photon+jet fragmentation function in ATLAS How is substructure modified by medium? Fragmentation function: $$D(p_T) = \frac{1}{N_{jet}} \frac{\Delta N(p_T)}{\Delta p_T}$$ **ATLAS-CONF-2017-074** ### 0-30% Pb+Pb / pp ### Modifications compared to pp: - → more soft particles due to interaction with the medium - \rightarrow suppression at mid p_T - \rightarrow no modification at high p_T ## Photon+jet fragmentation function in ATLAS How is substructure modified by medium? Fragmentation function: $$D(p_T) = \frac{1}{N_{jet}} \frac{\Delta N(p_T)}{\Delta p_T}$$ ### 0-30% Pb+Pb / pp - γ + jet vs inclusive jets: - \rightarrow more enhancement at low p_T - → shift of mid p_T minimum - \rightarrow no enhancement at high p_T Indication : quark initiated jets are modified differently ### Jet suppression in ATLAS Inclusive jet cross-sections are measured in pp and PbPb up to 1 TeV At large pT: flat suppression in central collisions ### Jet reconstruction at the LHC Jets consist of hadrons and photons \rightarrow energy can be measured by the calorimeters only Particle Flow in CMS (JINST 12 (2017) P10003) ATLAS (Eur. Phys. J. C 77 (2017) 466) Particle Flow reconstruction: Combine tracks and calorimeter clusters Particle Flow jet composition : - → 65% charged hadrons - → 25% photons - → 10% neutral hadrons Jet energy resolution improves by factor 2 at lower p_T thanks to the tracker resolution ## Jet clustering Jet clustering: reverse-engineering of the fragmentation and hadronization Sequential clustering: combines the closest particles into jets $$d_{ij}=\min(p_{ti}^{2p},p_{tj}^{2p})\frac{\Delta R_{ij}^2}{R^2} \qquad \qquad d_{iB}=p_{ti}^{2p} \begin{cases} \begin{array}{l} \text{p=1:kt} \\ \text{p=0:C/A} \\ \text{p=-1:anti-kt} \end{array} \\ \end{array}$$ Distance between pairs of particles #### JHEP 0804:063,2008 ## Underlying event in pp and PbPb collisions Underlying Event (UE) - particles not associated with the hardest parton-parton process quantified as transverse momentum density (ρ) PileUp (PU) – concurrent interactions coming from the same bunch crossing UE in pp with <PU> ~ 200 looks like central PbPb ### Jets in PbPb collisions #### After UE subtraction What amount of UE to subtract? How? ### UE subtraction in CMS: constituent subtraction Particle-by-particle: correct the 4-momentum of a jet and substructure Add ghosts with $p_{T}^{ghost} = A_{ghost} \cdot \rho$ in random locations; $A_{ghost} \text{ - area occupied}$ $\begin{array}{ll} \text{Combine them with the} & \text{The largest pT} \\ \text{closest real particle} & \text{particle/ghost survives} \\ \\ p_T^{\text{particle}} > p_T^{\text{ghost}} & p_T^{\text{particle}} = p_T^{\text{particle}} - p_T^{\text{ghost}} \\ \\ p_T^{\text{particle}} < p_T^{\text{ghost}} & p_T^{\text{ghost}} = p_T^{\text{ghost}} - p_{T \text{particle}} \\ \end{array}$ Repeat until no ghosts/particles left Remaining particles get clustered into a jet ## UE subtraction in CMS: iterative pedestal ## Jet clustering algorithms: requirements ### Collinear and IR safety: - → Collinear splittings should not bias jet finding - → Soft radiation should not effect jet configuration Minimal sensitivity to hadronization, underlying event (UE), Pile-Up(PU) ### Applicable at detector-level: - → good computational performance - → not to complex to correct ## Jet performance in pp collisions Very good resolution in ATLAS and CMS in pp collisions ### Jet performance in PbPb collisions Very good resolution in PbPb collisions for jets with R = 0.4 ## Dijet asymmetry in CMS Complementary information about the overall momentum balance in the dijet events: the projection of missing pT of reconstructed charged tracks onto the leading jet axis $$p_{\mathrm{T}}^{\parallel} = \sum_{\mathrm{i}} -p_{\mathrm{T}}^{\mathrm{i}} \cos \left(\phi_{\mathrm{i}} - \phi_{\mathrm{Leading Jet}}\right)$$ #### CMS, PRC84 (2011) 024906 Subleading jet energy is moved from high pT to lower pT and from small to large angles