

boson + jet Recent jet results in heavy-ion collisions with CMS

Inna Kucher

Laboratoire Leprince-Ringuet (Palaiseau, France)

EPS 2019 11 July 2019

Jets as a probe of the QGP

Parton energy loss is related to the thermodynamical and transport properties of the Quark Gluon Plasma

Inclusive and di-jet measurements are good for discovering physics effect: e.g dijet asymmetry of leading and subleading jets

All jets lose energy while traversing the QGP → controlled configuration of the initial hard scattering is needed

Boson + jets as a probe of the QGP

Parton energy loss is related to the thermodynamical and transport properties of the Quark Gluon Plasma

Bosons ($Z \rightarrow l^+l^-/\gamma$):

- Do not interact strongly with the QGP
- In "boson + jets" configuration they fix the recoiling jet kinematics (LO)
- At LHC energies enhanced quark jets sample : $q(\bar{q}) + g o Z(\gamma) + q(\bar{q})$

CMS measured:

CMS detector: photons and electrons

Photons and electrons

Photons* in ECAL barrel: $|\eta| < 1.44$

Electrons* in ECAL barrel and endcaps : $|\eta| < 2.5$

CMS detector: jets

jets

Jets* in $|\eta| < 1.6$

CMS detector: muons

muons

Muons* in $|\eta|$ < 2.4

* objects acceptance for the analysis shown in this talk

Object selections

Electrons: $|\eta| < 2.5$, $p_{\tau} > 20$ GeV/c, ECAL barrel-endcap gap excluded

Muons: $|\eta|$ < 2.4 , p_T > 10 GeV/c

Z boson: $e^+e^-/\mu^+\mu^-$ with $p_T > 40$ GeV/c, $70 < M_{inv} < 110$ GeV/c²

Each Z candidate is paired with all the jets in the event

Photons: $|\eta|$ <1.44 , p_T > 40 GeV , <u>isolation</u> (SumIso^{UE-sub}) < 1 GeV/c

The highest p_{τ} isolated photon is paired with all the jets in the event

Jets: anti-kT algorithm with R = 0.3, $|\eta|$ < 1.6, p_{τ} > 30 GeV/c

Jets reconstructed within $\Delta R < 0.4$ from lepton are rejected to eliminate jet energy contamination by leptons coming from Z

All "boson+jet" pairs are selected , to suppress initial and final state radiation effect \to look into back-to-back pairs only $\Delta\phi_{iZ(\gamma)}>7\pi/8$

Z+jet correlations

What is the amount of energy lost in jet cone? \rightarrow Z - jet p_T balance

jet

Back-to-back pairs :
$$\Delta\phi_{jZ} > 7\pi/8$$

PbPb 0-30% collisions:

balance shifts to lower values wrt pp

The results are not unfolded for detector effects \rightarrow pp data are smeared to simulate poor resolution due to UE fluctuations in PbPb data

Z+jet correlations

JEWEL model – perturbative framework for jet quenching:

- No energy loss case (Pythia6): poor agreement with pp
- Energy loss case: consistent with PbPb data

Hybrid model - weak coupling = (high- Q^2) jet evolution, as it would be in vaccum; strong coupling = (low- Q^2) interactions between parton shower and medium:

- No energy loss case (Pythia8): describes reasonably well pp
- Energy loss case: strong coupling appears to be the closest to PbPb data

Guylassy-Levai-Vitev (GLV) model – energy loss via out of cone radiation and collisional energy dissipation :

- No energy loss case (Pythia8): describes reasonably well pp
- Energy loss case: strength of the quenching g = 2.2 seems to be favored by PbPb data

Z+jet correlations

Mean value of the balance ($< X_{iZ} >$) vs p_T :

→ For full pT range it is lower in PbPb wrt pp

Probability to find an associated jet per $Z(R_{i7})$:

- \rightarrow Overall decrease in PbPb as jet falls below p_T threshold
- \rightarrow pp and PbPb difference ~constant with p₊:

relatively smaller fraction of jets is lost in PbPb for larger initial parton energies

Both are the indication of the jet energy loss in QGP

Isolated-photon+jet correlations

In PbPb central events balance shifts to lower values wrt pp

Consistent with Z-jet measurement

Mean value of the balance ($< X_{iv}>$)

Probability to find a jet partner for photon (R_{iv})

In 0-30% PbPb suppression (compared to smeared pp) of both $\langle X_{iz} \rangle$ and R_{iz} is observed

Isolated-photon+jet correlations

Main features of x_{Jv} distributions are reproduced by all models

Jet fragmentation

Fragmentation pattern wrt p_T of the reconstructed jet (jet that may have lost energy via interactions with the medium)

Track projected to the jet axis

$$\xi^{jet} = \ln \frac{-|\vec{p}|^{jet}|^2}{\vec{p}|^{trk} \cdot \vec{p}|^{jet}}$$

50-100% PbPb consistent with pp 0-10% PbPb:

- enhancement for $\xi_{jet} > 2.5$ ($p_T^{trk} < 2.5$ GeV)
- Slight suppression at $0.5 < \xi_{jet} < 2.5$ (2.5 < $p_{\tau}^{trk} < 18 \text{ GeV}$)

Jet fragmentation

Fragmentation pattern wrt p_{τ} of the initial parton **before energy loss occurred**

Track projected to the photon axis

$$\xi_T^{\gamma} = \ln \frac{-|\vec{p}_T^{\gamma}|^2}{\vec{p}_T^{trk} \cdot \vec{p}_T^{\gamma}}$$

50-100% PbPb consistent with pp 0-10% PbPb:

- enhancement for $\xi_{\tau}^{\gamma} > 3$ ($p_{\tau}^{trk} < 3$ GeV)
- suppression at 0.5 < ξ_{T}^{Y} < 3 (3 < p_{T}^{trk} < 36 GeV)

Jet shapes of isolated photon-tagged jets

Phys. Rev. Lett. 122 (2019) 152001

Jet shapes is an observable for studying distribution of parton energy in radial direction

$$\rho(r) = \frac{1}{\delta r} \frac{\sum_{jets} \sum_{r_a < r < r_b} (p_T^{trk}/p_T^{jet})}{\sum_{jets} \sum_{0 < r < r_f} (p_T^{trk}/p_T^{jet})}$$

 $\rho(r)$ is normalized to unity for r = 0.3

$$r = \sqrt{(\eta^{jet} - \eta^{trk})^2 + (\phi^{jet} - \phi^{trk})^2}$$

How the jet p_{τ} is distributed in a direction transverse to the jet axis?

Jet shapes of isolated photon-tagged jets

Phys. Rev. Lett. 122 (2019) 152001

Summary

• Energy loss manifests itself in the balance shift to lower values and overall decrease of " Z/γ + jet" pairs

 "γ + jet" fragmentation functions: parton showers emerging from the QGP contain more lower-energy particles

 "γ + jet" jet shapes: a direct observation of the jet broadening in the QGP

Backup slides

Dijet p⊤ balance

If **no energy loss**, typically two jets have equal pT wrt the beam axis → ~ **back-to-back**

In PbPb more typical picture is highly unbalanced dijets

How to quantify the effect?

Dijet asymmetry in CMS

Dijet asymmetry of leading and subleading jets

 $p_{T,1} > 120 \text{ GeV}, \ p_{T,2} > 50 \text{ GeV}$ $\Delta \phi > 2\pi/3$

"no energy loss" : peak ~ 0.1 PbPb data : peak ~ 0.3

Fraction of all events with "balanced" jets

CMS, PRC84 (2011) 024906

In the most central PbPb ~ 2 times less "balanced" dijets

High degree of jet quenching

Z-jet correlations

Distributions of the azimuthal angle difference $\Delta\phi_{jZ}$ between the Z boson and the jet

No difference in the angular difference between PbPb and pp

Z-jet correlations

Comparison pp and PbPb to models:

Photon-jet correlations

Distributions of the azimuthal angle difference $\Delta\phi_{j\gamma}$ between the photon and the jet

No difference in the angular difference between PbPb and pp

Jet fragmentation function in ATLAS

Distribution of charged-particle p_T inside the jet (fragmentation function) :

$$D(p_T) = \frac{1}{N_{jet}} \frac{\Delta N(p_T)}{\Delta p_T}$$

ATLAS, Phys. Rev. C 98 (2018) 024908

Jet fragmentation function in ATLAS

Distribution of charged-particle p_T inside the jet (fragmentation function) :

$$D(p_T) = \frac{1}{N_{jet}} \frac{\Delta N(p_T)}{\Delta p_T}$$

$$R_{D(p_T)} = \frac{D(p_T)_{PbPb}}{D(p_T)_{pp}}$$

PbPb compared to pp:

- → more soft particles due to interaction with the medium
- \rightarrow suppression at mid p_T
- → enhancement at high p_T: consistent with quenching dependence on quark/gluon initiated jets

Gluon vs quark jet:

- → larger charged hadron multiplicity
- → contain more softer particle
- → wider

ATLAS, Phys. Rev. C 98 (2018) 024908

Photon+jet pT balance in ATLAS

What is the amount of energy lost by the jet?

Balance:
$$X_{J\gamma} = \frac{p_{T,jet}}{p_T^{\gamma}}$$

ATLAS, Phys. Lett. B 789 (2019) 167

The jet energy decrease with centrality

- in peripheral events: a peak-like structure is present in the same position as in pp
- in the most central events : strongly modified, no peak, jet energy decrease

Photon+jet fragmentation function in ATLAS

How is substructure modified by medium?

Fragmentation function:

$$D(p_T) = \frac{1}{N_{jet}} \frac{\Delta N(p_T)}{\Delta p_T}$$

ATLAS-CONF-2017-074

0-30% Pb+Pb / pp

Modifications compared to pp:

- → more soft particles due to interaction with the medium
- \rightarrow suppression at mid p_T
- \rightarrow no modification at high p_T

Photon+jet fragmentation function in ATLAS

How is substructure modified by medium?

Fragmentation function:

$$D(p_T) = \frac{1}{N_{jet}} \frac{\Delta N(p_T)}{\Delta p_T}$$

0-30% Pb+Pb / pp

- γ + jet vs inclusive jets:
 - \rightarrow more enhancement at low p_T
 - → shift of mid p_T minimum
 - \rightarrow no enhancement at high p_T

Indication : quark initiated jets are modified differently

Jet suppression in ATLAS

Inclusive jet cross-sections are measured in pp and PbPb up to 1 TeV

At large pT: flat suppression in central collisions

Jet reconstruction at the LHC

Jets consist of hadrons and photons \rightarrow energy can be measured by the calorimeters only

Particle Flow in CMS (JINST 12 (2017) P10003)
ATLAS (Eur. Phys. J. C 77 (2017) 466)

Particle Flow reconstruction:

Combine tracks and calorimeter clusters

Particle Flow jet composition :

- → 65% charged hadrons
- → 25% photons
- → 10% neutral hadrons

Jet energy resolution improves by factor 2 at lower p_T thanks to the tracker resolution

Jet clustering

Jet clustering: reverse-engineering of the fragmentation and hadronization

Sequential clustering: combines the closest particles into jets

$$d_{ij}=\min(p_{ti}^{2p},p_{tj}^{2p})\frac{\Delta R_{ij}^2}{R^2} \qquad \qquad d_{iB}=p_{ti}^{2p} \begin{cases} \begin{array}{l} \text{p=1:kt} \\ \text{p=0:C/A} \\ \text{p=-1:anti-kt} \end{array} \\ \end{array}$$
 Distance between pairs of particles

JHEP 0804:063,2008

Underlying event in pp and PbPb collisions

Underlying Event (UE) - particles not associated with the hardest parton-parton process quantified as transverse momentum density (ρ)

PileUp (PU) – concurrent interactions coming from the same bunch crossing

UE in pp with <PU> ~ 200 looks like central PbPb

Jets in PbPb collisions

After UE subtraction

What amount of UE to subtract? How?

UE subtraction in CMS: constituent subtraction

Particle-by-particle: correct the 4-momentum of a jet and substructure

Add ghosts with $p_{T}^{ghost} = A_{ghost} \cdot \rho$ in random locations; $A_{ghost} \text{ - area occupied}$

 $\begin{array}{ll} \text{Combine them with the} & \text{The largest pT} \\ \text{closest real particle} & \text{particle/ghost survives} \\ \\ p_T^{\text{particle}} > p_T^{\text{ghost}} & p_T^{\text{particle}} = p_T^{\text{particle}} - p_T^{\text{ghost}} \\ \\ p_T^{\text{particle}} < p_T^{\text{ghost}} & p_T^{\text{ghost}} = p_T^{\text{ghost}} - p_{T \text{particle}} \\ \end{array}$

Repeat until no ghosts/particles left

Remaining particles get clustered into a jet

UE subtraction in CMS: iterative pedestal

Jet clustering algorithms: requirements

Collinear and IR safety:

- → Collinear splittings should not bias jet finding
- → Soft radiation should not effect jet configuration

Minimal sensitivity to hadronization, underlying event (UE), Pile-Up(PU)

Applicable at detector-level:

- → good computational performance
- → not to complex to correct

Jet performance in pp collisions

Very good resolution in ATLAS and CMS in pp collisions

Jet performance in PbPb collisions

Very good resolution in PbPb collisions for jets with R = 0.4

Dijet asymmetry in CMS

Complementary information about the overall momentum balance in the dijet events: the projection of missing pT of reconstructed charged tracks onto the leading jet axis

$$p_{\mathrm{T}}^{\parallel} = \sum_{\mathrm{i}} -p_{\mathrm{T}}^{\mathrm{i}} \cos \left(\phi_{\mathrm{i}} - \phi_{\mathrm{Leading Jet}}\right)$$

CMS, PRC84 (2011) 024906

Subleading jet energy is moved from high pT to lower pT and from small to large angles