Tomasz Bold - AGH UST Krakow, Poland on behalf of the ATLAS Collaboration #### Plan • Correlations of v_n harmonics: with event mean- p_T in Pb+Pb and p+Pb collisions ``` <u>arXiv:1907.05176</u> [nucl-ex] ``` Flow measurements in Pb+Pb with multi particle cumulants ``` <u>arXiv:1904.04808</u> [nucl-ex] ``` Flow measurements in Xe+Xe collisions ``` ATLAS-CONF-2018-011 ``` More AtlasPublic/HeavylonsPublicResults ### The ATLAS detector • Measurements mostly based on the Inner Detector tracker (ID) $|\eta| < 2.5 - 5$ rapidity units # Mean p_T correlation with flow harmonics in Pb+Pb and p+Pb <u>arXiv:1907.05176</u> [nucl-ex] NEW result from: 11th July - Relate initial state quantity (event mean $[p_T]$) with evolution towards the final state (flow harmonics) - Known that the correlation exists (ALICE Collab. Phys. Rev. C 93, 034916) - Pearson correlation coefficient distorted by the limited event multiplicity - A modified correlator proposed (P. Bozek Phys. Rev. C93 (2016) 044908) - Replaces variances by dynamic counterparts Var_{dyn}, c_k - Reproduces true R even with limited event multiplicity → detector independent measurement - Is the correlation present & positive or negative? Is it strong? Is it the same for all harmonics? Is it the same in Pb+Pb an p+Pb? $$R = \frac{\text{cov}(v_n \{2\}^2, [p_T])}{\sqrt{\text{Var}(v_n \{2\}^2)} \sqrt{\text{Var}([p_T])}},$$ $$\rho = \frac{\text{cov}(v_n \{2\}^2, [p_T])}{\sqrt{\text{Var}(v_n \{2\}^2)_{\text{dyn}} \sqrt{c_k}}}.$$ $$Var(v_n\{2\}^2) = \langle corr\{4\} \rangle - \langle corr\{2\} \rangle^2$$ Ingredients of the ρ for v_2 Significant variation with centrality Trend flows the v₂ magnitude Negative in peripheral events! $$0.5 < p_T < 5 \text{ GeV}, |\eta| < 2.5$$ Magnitude of v_2 fluctuations Similar trend to v_2 Different p_T ordering as compared to cov c_k quantifies magnitude of p_T fluctuations Nontrivial p_T interval ordering, different than for cov and dyn. var ### Correlation coefficient p Negative correlation for v_2 in peripheral events → related to ecc. ~ 1/r Gentle rise above → stronger hydrodynamic response to initial eccentricities Fall in most central events Positive except for $N_{part} < 100$ and $p_T > 1$ GeV Above $N_{part} \approx 100$ steady rise Significant correlation for v₄ The trend is mostly inverted as compared to v_2 and v_3 Evident change of the trend in central events -> nonlinear hydro response to initial geometry fluctuations? #### The ρ in p+Pb in comparison to Pb+Pb The p_T fluctuations (c_k) are of similar magnitude on p+Pb and peripheral Pb+Pb when matched N_{ch} The difference in the ρ values driven by the flow #### The ρ for v_2 is negative in high multiplicity p+Pb collisions Favours small dimensions of the initial state \rightarrow higher pressure ([p_T]), low eccentricity (v₂) No geometry driven trend observed in p+Pb compared to a strong effect in Pb+Pb #### Flow measurements in Pb+Pb collisions with multi particle cumulants arXiv:1904.04808 - The cumulants methodology can be used to extract the flow harmonics, and correlations between them - Result checked with sub-event method to exclude non-flow - Can answer number of questions about v_n - Is it driven by the initial stage geometry only? - Are v_n fluctuations an initial state effect or final state effect? - Is the dipolar flow (v₁) visible in multi particle correlations? - + other questions: Does the "centrality definition" affect measured? Are different modes correlated? ## Geometry only? The ratio of $\frac{v_n\{2\}}{v_n\{4\}}$ and eccentricities $\frac{\epsilon\{2\}}{\epsilon\{4\}}$ identical. If =1 - only initial shape relevant. The ratio of eccentricities is not reachable experimentally. However, we can look if the former exhibits p_T dependence. Magnitude: ~1 - small fluctuations, ~0 - large fluctuations - Evident p_T dependence observed - Final state/evolution have an impact on the observed v₂ and v₃ - Fluctuations have a small relative contribution to v₂, and only in central & peripheral collisions, - larger contribution from fluctuations to observed v₃ - Non-trivial evolution with centrality ### The shape of PDF(v_n) The ratio $\frac{v_v\{4\}}{v_n\{6\}} = 1$ indicate gaussian initial shape fluctuations If vary with p_T interval indicate final state effects The ratio is extracted from normalised cumulants nc₂{4} and nc₂{6} Slight deviation from unity - non gaussian fluctuations Observable variation with p_T - final state effect ## Dipolar flow V₁{4} - Negative $c_1\{4\}$ —> first published measurement of the $v_1\{4\}$ - Sub-event cumulants to eliminate short-range correlations —> same conclusion - The v₁{4} is most pronounced in the peripheral events and only exits for higher p⊤ #### Flow in Xe+Xe collisions - Goal is to measure the flow in Xe+Xe collisions in comparison to Pb+Pb - Centrality dependence - Scaling via higher order correlations - Measurements performed in bins of centrality (0-80%) quantified by E_T in FCal 3.2< $|\eta|$ <4.9 - Mapped to N_{part} via Glauber modeling - Is the measurement sensitive enough to see geometry change (oblate Xe shape)? How do harmonics scale with centrality (geometry) or N_{part} (size)? # Centrality dependence Xe+Xe vs. Pb+Pb - The measured flow harmonics resemble those in Pb+Pb - v_n is higher in most central events for Xe+Xe collisions - Elongated Xe shape - Smaller $N_{part} \rightarrow larger fluctuations$ - Reduced value in mid central and peripheral - → surface effect → smaller initial eccentricities - → viscous corrections - A similar behaviour seen for v_3 and v_4 for different p_T - Consistent with predictions! Giacalone et al. Phys. Rev. C 97, 034904 (2018) #### Centrality dependence - geometry scaling ● Typical pattern for centrality/⑤ Npart dependence N_{part} scaling for v₂ does not hold however centrality scaling does work: #### —> geometric origin of the elliptic flow Scaling with centrality or N_{part} for the higher order harmonics: **not so** obvious #### N_{part} dependence - fluctuations scaling - A more sensitive variable: 4-particle cumulants to check scaling for 3rd and 4th harmonic - They scale with $N_{part} \rightarrow v_3$, v_4 are fluctuations driven #### Conclusions - ATLAS Measured correlations of flow with event mean- p_T in Pb+Pb and p+Pb - Significant values for all harmonics in mid central Pb+Pb - For peripheral Pb+Pb collisions and p+Pb the v₂-mean-p⊤ correlation negative - Using cumulants shed light on the initial and final state effects in observed v_n in Pb+Pb collisions at 5.02 TeV - Flow fluctuations, di-polar flow, shape of vn - Performed a comprehensive study of flow in Xe+Xe collisions at 5.44 TeV and compared to Pb+Pb at 5.02 TeV - The observed v_n are mostly compatible with that in Pb+Pb slight deviations well predicted by theory - Scaling of v₂ and higher higher flow harmonics indicate a different origin of them # Thank you # Backups # Xe+Xe / Pb+Pb flow harmonics ratio # Backup for v_n-p_T correlations measurement ### ATLAS Measurement details $[p_{\rm T}] = \frac{1}{\sum_b w_b} \sum_b w_b p_{\rm T}b$ $$cov(v_n\{2\}^2, [p_{\mathrm{T}}]) = \left\langle \frac{1}{\sum_{a,c} w_a w_c} \sum_{a,c} w_a w_c e^{in\phi_a - in\phi_c} \frac{1}{\sum_b w_b} \sum_b w_b (p_{\mathrm{T},b} - \langle [p_{\mathrm{T}}] \rangle) \right\rangle$$ - Distinct sets of particles for $[p_T]$ and $v_n\{2\}^2$ - Rapidity gaps to suppress non-flow - Analysis in narrow bins of multiplicity in A+C regions (unconstrained in B) - Mapped to charged particle multiplicity N_{ch} and number $w_b(p_{T,b} \langle [p_T] \rangle) w_{b'}(p_{T,b'} \langle [p_T] \rangle)$ of participants Npart - \bullet Several p_T intervals to test hydrodynamics region, energy loss region & sensitivity to multiplicity change $var(v_n^2)_{dyn} = \langle corr\{4\} \rangle - \langle corr\{2\} \rangle^2$ $c_k = \left\langle \frac{1}{(\sum_b w_b)^2 - \sum_b w_b^2} \sum_{b \neq b'} \frac{1}{\sum_{b \neq b'}} \right\rangle$ #### Intermediate results: #### *V*3 - Covariances - Flat dependence \rightarrow very different N_{ch} dependence compared to v_2 - Very different magnitudes - Dynamical variance - a similar N_{ch} dep. as v_2 - c_k quantifies magnitude of p_T fluctuations - ullet p_T interval ordering yet different than for cov and dyn. var #### Intermediate results: V4 - Covariances and dynamical variances similar behaviour to v₂ except much smaller magnitude - Low N_{ch} not accessible - ok quantifies magnitude of p⊤ fluctuations - p_T interval ordering yet different than for cov and dyn. var Ingredient s of ρ_{v_2} in ρ +Pb