

Tomasz Bold - AGH UST Krakow, Poland on behalf of the ATLAS Collaboration

Plan

• Correlations of v_n harmonics: with event mean- p_T in Pb+Pb and p+Pb collisions

```
<u>arXiv:1907.05176</u> [nucl-ex]
```

Flow measurements in Pb+Pb with multi particle cumulants

```
<u>arXiv:1904.04808</u> [nucl-ex]
```

Flow measurements in Xe+Xe collisions

```
ATLAS-CONF-2018-011
```

More

AtlasPublic/HeavylonsPublicResults

The ATLAS detector

• Measurements mostly based on the Inner Detector tracker (ID) $|\eta| < 2.5 - 5$ rapidity units

Mean p_T correlation with flow harmonics in Pb+Pb and p+Pb

<u>arXiv:1907.05176</u> [nucl-ex]

NEW result from: 11th July

- Relate initial state quantity (event mean $[p_T]$) with evolution towards the final state (flow harmonics)
- Known that the correlation exists (ALICE Collab. Phys. Rev. C 93, 034916)
- Pearson correlation coefficient distorted by the limited event multiplicity
- A modified correlator proposed
 (P. Bozek Phys. Rev. C93 (2016) 044908)
 - Replaces variances by dynamic counterparts Var_{dyn}, c_k
 - Reproduces true R even with limited event multiplicity
 → detector independent measurement
 - Is the correlation present & positive or negative?
 Is it strong? Is it the same for all harmonics?
 Is it the same in Pb+Pb an p+Pb?

$$R = \frac{\text{cov}(v_n \{2\}^2, [p_T])}{\sqrt{\text{Var}(v_n \{2\}^2)} \sqrt{\text{Var}([p_T])}},$$

$$\rho = \frac{\text{cov}(v_n \{2\}^2, [p_T])}{\sqrt{\text{Var}(v_n \{2\}^2)_{\text{dyn}} \sqrt{c_k}}}.$$

$$Var(v_n\{2\}^2) = \langle corr\{4\} \rangle - \langle corr\{2\} \rangle^2$$

Ingredients of the ρ for v_2

Significant variation with centrality
Trend flows the v₂ magnitude
Negative in peripheral events!

$$0.5 < p_T < 5 \text{ GeV}, |\eta| < 2.5$$

Magnitude of v_2 fluctuations

Similar trend
to v_2 Different p_T ordering
as compared to cov

 c_k quantifies magnitude of p_T fluctuations

Nontrivial p_T interval ordering, different than for cov and dyn. var

Correlation coefficient p

Negative correlation for v_2 in peripheral events

→ related to ecc. ~ 1/r

Gentle rise above → stronger hydrodynamic response to initial eccentricities

Fall in most central events

Positive except for $N_{part} < 100$ and $p_T > 1$ GeV

Above $N_{part} \approx 100$ steady rise

Significant correlation for v₄

The trend is mostly inverted as compared to v_2 and v_3

Evident change of the trend in central events -> nonlinear hydro response to initial geometry fluctuations?

The ρ in p+Pb in comparison to Pb+Pb

The p_T fluctuations (c_k) are of similar magnitude on p+Pb and peripheral Pb+Pb when matched N_{ch} The difference in the ρ values driven by the flow

The ρ for v_2 is negative in high multiplicity p+Pb collisions

Favours small dimensions of the initial state \rightarrow higher pressure ([p_T]), low eccentricity (v₂)

No geometry driven trend observed in p+Pb compared to a strong effect in Pb+Pb

Flow measurements in Pb+Pb collisions with multi particle cumulants arXiv:1904.04808

- The cumulants methodology can be used to extract the flow harmonics, and correlations between them
 - Result checked with sub-event method to exclude non-flow
- Can answer number of questions about v_n
 - Is it driven by the initial stage geometry only?
 - Are v_n fluctuations an initial state effect or final state effect?
 - Is the dipolar flow (v₁) visible in multi particle correlations?
- + other questions: Does the "centrality definition" affect measured? Are different modes correlated?

Geometry only?

The ratio of $\frac{v_n\{2\}}{v_n\{4\}}$ and eccentricities $\frac{\epsilon\{2\}}{\epsilon\{4\}}$ identical. If =1 - only initial shape relevant.

The ratio of eccentricities is not reachable experimentally. However, we can look if the former exhibits p_T dependence.

Magnitude: ~1 - small fluctuations, ~0 - large fluctuations

- Evident p_T dependence observed
 - Final state/evolution have an impact on the observed v₂ and v₃
- Fluctuations have a small relative contribution to v₂, and only in central & peripheral collisions,
- larger contribution from fluctuations to observed v₃
- Non-trivial evolution with centrality

The shape of PDF(v_n)

The ratio $\frac{v_v\{4\}}{v_n\{6\}} = 1$ indicate gaussian initial shape

fluctuations

If vary with p_T interval indicate final state effects

The ratio is extracted from normalised cumulants nc₂{4} and nc₂{6}

Slight deviation from unity - non gaussian fluctuations

Observable variation with p_T - final state effect

Dipolar flow V₁{4}

- Negative $c_1\{4\}$ —> first published measurement of the $v_1\{4\}$
- Sub-event cumulants to eliminate short-range correlations —> same conclusion
- The v₁{4} is most pronounced in the peripheral events and only exits for higher p⊤

Flow in Xe+Xe collisions

- Goal is to measure the flow in Xe+Xe collisions in comparison to Pb+Pb
 - Centrality dependence
 - Scaling via higher order correlations
- Measurements performed in bins of centrality (0-80%) quantified by E_T in FCal 3.2< $|\eta|$ <4.9
 - Mapped to N_{part} via Glauber modeling
- Is the measurement sensitive enough to see geometry change (oblate Xe shape)?
 How do harmonics scale with centrality (geometry) or N_{part} (size)?

Centrality dependence Xe+Xe vs. Pb+Pb

- The measured flow harmonics resemble those in Pb+Pb
- v_n is higher in most central events for Xe+Xe collisions
 - Elongated Xe shape
 - Smaller $N_{part} \rightarrow larger fluctuations$
- Reduced value in mid central and peripheral
 - → surface effect → smaller initial eccentricities
 - → viscous corrections
- A similar behaviour seen for v_3 and v_4 for different p_T
- Consistent with predictions!

Giacalone et al. Phys. Rev. C 97, 034904 (2018)

Centrality dependence - geometry scaling

● Typical pattern for centrality/⑤ Npart dependence

 N_{part} scaling for v₂ does not hold however centrality scaling does work:

—> geometric origin of the elliptic flow

 Scaling with centrality or N_{part} for the higher order harmonics: **not so**

obvious

N_{part} dependence - fluctuations scaling

- A more sensitive variable:
 4-particle cumulants to check scaling for 3rd and 4th harmonic
- They scale with $N_{part} \rightarrow v_3$, v_4 are fluctuations driven

Conclusions

- ATLAS Measured correlations of flow with event mean- p_T in Pb+Pb and p+Pb
 - Significant values for all harmonics in mid central Pb+Pb
 - For peripheral Pb+Pb collisions and p+Pb the v₂-mean-p⊤ correlation negative
- Using cumulants shed light on the initial and final state effects in observed v_n in Pb+Pb collisions at 5.02 TeV
 - Flow fluctuations, di-polar flow, shape of vn
- Performed a comprehensive study of flow in Xe+Xe collisions at 5.44 TeV and compared to Pb+Pb at 5.02 TeV
 - The observed v_n are mostly compatible with that in Pb+Pb slight deviations well predicted by theory
 - Scaling of v₂ and higher higher flow harmonics indicate a different origin of them

Thank you

Backups

Xe+Xe / Pb+Pb flow harmonics ratio

Backup for v_n-p_T correlations measurement

ATLAS Measurement details

 $[p_{\rm T}] = \frac{1}{\sum_b w_b} \sum_b w_b p_{\rm T}b$

$$cov(v_n\{2\}^2, [p_{\mathrm{T}}]) = \left\langle \frac{1}{\sum_{a,c} w_a w_c} \sum_{a,c} w_a w_c e^{in\phi_a - in\phi_c} \frac{1}{\sum_b w_b} \sum_b w_b (p_{\mathrm{T},b} - \langle [p_{\mathrm{T}}] \rangle) \right\rangle$$

- Distinct sets of particles for $[p_T]$ and $v_n\{2\}^2$
- Rapidity gaps to suppress non-flow
- Analysis in narrow bins of multiplicity in A+C regions (unconstrained in B)
 - Mapped to charged particle multiplicity N_{ch} and number $w_b(p_{T,b} \langle [p_T] \rangle) w_{b'}(p_{T,b'} \langle [p_T] \rangle)$ of participants Npart
- \bullet Several p_T intervals to test hydrodynamics region, energy loss region & sensitivity to multiplicity change

 $var(v_n^2)_{dyn} = \langle corr\{4\} \rangle - \langle corr\{2\} \rangle^2$

 $c_k = \left\langle \frac{1}{(\sum_b w_b)^2 - \sum_b w_b^2} \sum_{b \neq b'} \frac{1}{\sum_{b \neq b'}} \right\rangle$

Intermediate results:

*V*3

- Covariances
 - Flat dependence \rightarrow very different N_{ch} dependence compared to v_2
 - Very different magnitudes
- Dynamical variance
 - a similar N_{ch} dep. as v_2

- c_k quantifies magnitude of p_T fluctuations
- ullet p_T interval ordering yet different than for cov and dyn. var

Intermediate results:

V4

- Covariances and dynamical variances similar
 behaviour to v₂ except much smaller magnitude
- Low N_{ch} not accessible

- ok quantifies magnitude of p⊤ fluctuations
- p_T interval ordering yet different than for cov and dyn. var

Ingredient s of ρ_{v_2} in ρ +Pb

