Production of open heavy flavor hadrons in pPb collisions at LHCb

Yanxi ZHANG on behalf of the LHCb Collaboration

CERN

11 July 2019
Outline

• Introduction

• The LHCb experiment

• Open heavy flavor measurements in pPb collisions

 ➢ D^0 production at $\sqrt{s_{NN}} = 5$ TeV [JHEP 10 (2017) 090]

 ➢ Λ_c^+ production at $\sqrt{s_{NN}} = 5$ TeV [LHCb-PAPER-2018-021]

 ➢ Beauty production at $\sqrt{s_{NN}} = 8.16$ TeV [PRD 99 (2019) 052011]

• Summary
Introduction

• Unique probe in heavy-ion collisions
 ➢ $m_Q \gg \Lambda_{QCD}$, allows perturbative calculations
 ➢ $t_{\text{prod}} \ll t_{\text{QGP}}$, experience whole time evolution of collision

• Study also cold nuclear matter effects
 ➢ Modification of parton distribution functions: nPDF or CGC
 ➢ Energy-loss with (in)coherent small-angle gluon radiation
 ➢ Interacting with co-moving particles

• Heavy flavor measurements
 ➢ Particle correlations
 ➢ Kinematics, track multiplicity and species dependence
 ➢ Variations in collision systems
LHCb experiment

Precision measurements in b, c flavor sectors

$\tau(H_b) \sim 1.5$ ps, $\tau(H_c) \sim 0.1 - 1$ ps

Vertex Locator (vertex reconstruction)

- Impact parameter resolution: $(15 + 29/p_T) \mu$m
- Time resolution: 45 fs, resolving HF decay vertex

Tracking system (particle reconstruction)

- ϵ(Tracking) ~ 96
- $\delta p/p \sim 0.5\%-1\%$ (5-200 GeV)
- $\sigma(m_{B \rightarrow hh}) \approx 22$ MeV

Decays: $b \rightarrow c \rightarrow s (K^\pm)$;
Baryon \rightarrow proton

RICH detectors ($K/\pi/p$ separation)

- $\epsilon(K \rightarrow K) \sim 95\%$ for $r(\pi \rightarrow K) \sim 5\%$

Magnet
Bending power: 4 Tm

pp collision point
LHCb proton-lead data taking

- 2013 pPb runs: collected about 2 nb\(^{-1}\) data at \(\sqrt{s_{NN}} = 5\) TeV

- 2016 pPb runs: collected about 30 nb\(^{-1}\) data at \(\sqrt{s_{NN}} = 8.16\) TeV

Proton and lead beam inverted \(\rightarrow\) two beam configurations

- LHCb collected collisions in either proton (positive rapidity) or lead beam (negative rapidity) direction
Measurements with pPb collisions

- D^0 production at $\sqrt{s_{\text{NN}}} = 5$ TeV
 [JHEP 10 (2017) 090]
- Λ_c^+ production at $\sqrt{s_{\text{NN}}} = 5$ TeV
 [JHEP 02 (2019) 102]
- Beauty production at $\sqrt{s_{\text{NN}}} = 8.16$ TeV
 [PRD 99 (2019) 052011]
Prompt D^0 in pPb data

- D^0 fully reconstructed through $D^0 \rightarrow K^\mp \pi^\pm$ decays
- Prompt and secondary D^0 yields separated using impact parameter w.r.t. PV
- Reconstruction and particle ID efficiency calibrated using data
- Measurement down to zero-p_T
Forward-backward ratio

- Comparing production in proton and lead beam directions

\[R_{FB}(p_T, y^*) = \frac{d^2\sigma_{pPb}(p_T, +|y^*|)/dp_T dy^*}{d^2\sigma_{PbP}(p_T, -|y^*|)/dp_T dy^*} \]

- \(R_{FB} \) indicates significant production asymmetry between p- and Pb-beam direction
 - Asymmetry increases with rapidity and decreases at high \(p_T \)
 - Data consistent with predictions with various nPDF sets

\[2.5 < |y| < 4.0 \quad \text{LHCb} \quad \sqrt{s_{NN}} = 5 \text{ TeV} \]

\[p_T < 10 \text{GeV/c} \quad \text{LHCb} \quad \sqrt{s_{NN}} = 5 \text{ TeV} \]

\[D^0 \quad p_T \quad |y^*| \]
Strong suppression at positive rapidity (~30%), compatible with no suppression and hint of enhancement \rightarrow different nuclear modification in proton and lead beam direction

JHEP 04 (2009) 065, EPJ C77 (2017) 1

CGC: PR D91 (2015) 114005
arXiv:1706.06728
Similar nuclear modification for D^0 and J/ψ: $\frac{R_{pPb}(J/\psi)}{R_{pPb}(D^0)} \approx 1$; $\psi(2S)$ more suppressed.

JHEP 04 (2009) 065, EPJ C77 (2017) 1
CGC: PR D91 (2015) 114005
arXiv:1706.06728
• Suppression-enhancement pattern predicted by nPDFs
• At positive rapidity region also consistent with CGC, with a proper saturation scale
R_{pA}: double differential

LHCb
Pbp, $\sqrt{s_{NN}}$=5 TeV

Decreasing with y (Pb to p beam direction)
Increasing with p_T
Nuclear modification factor

• Observation described by calculations using nPDFs or the CGC model (p-direction)
• Data help to reduce nPDF uncertainties
 - Complexities: scale uncertainties, other nuclear effects

JHEP 04 (2009) 065, EPJ C77 (2017) 1

CGC: PR D91 (2015) 114005
arXiv:1706.06728

PRL 121 (2018) 052004

+ arXiv:1906.02512
Prompt Λ_c^+ in pPb data

- Studied in $\Lambda_c^+ \rightarrow pK^-\pi^+$ decays, also high signal purity. $\sim 11/4K$ signals at positive/negative rapidity
- Same strategy as prompt D^0 analysis

Forward-backward ratio consistent with calculations using nPDF, however large uncertainty bands on both data and calculations
Baryon over meson ratio

- Most nPDF uncertainties cancel out, sensitive to charm quark fragmentation

- Λ_c^+/D^0 similar in p and Pb beam directions
- Generally consistent with expectations from pp data $\Lambda_c^+/D^0 \sim 0.3$, hint of discrepancy at high p_T for proton beam direction
- Tensions between LHCb and ALICE?

Analyses with new data essential!
Beauty hadron production

- Beauty fragmentation fractions in pPb data
- $\sqrt{s_{\text{NN}}} = 8.16 \text{ TeV}, \sim 30 \text{ nb}^{-1} \text{ (positive + negative rapidity)}$
- Exclusive decay modes: $B^+ \to J/\psi K^+, \bar{D}^0 \pi^+, B^0 \to D^- \pi^+, \Lambda_b^0 \to \Lambda_c^+ \pi^-$

Signal yields

<table>
<thead>
<tr>
<th>Decay</th>
<th>pPb</th>
<th>PbP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+ \to \bar{D}^0 \pi^+$</td>
<td>1958 ± 54</td>
<td>1806 ± 55</td>
</tr>
<tr>
<td>$B^+ \to J/\psi K^+$</td>
<td>883 ± 32</td>
<td>907 ± 33</td>
</tr>
<tr>
<td>$B^0 \to D^- \pi^+$</td>
<td>1151 ± 38</td>
<td>889 ± 34</td>
</tr>
<tr>
<td>$\Lambda_b^0 \to \Lambda_c^+ \pi^-$</td>
<td>484 ± 24</td>
<td>399 ± 23</td>
</tr>
</tbody>
</table>
Cross-sections

- B^+ cross-section studied in $J/\psi K^+$ and $\bar{D}^0 \pi^+$ modes consistent, systematic effects under control. Precision improved in weighted average.

Statistics limited for $p_T < 2$ GeV, excluded for measurements.
• Probing relative b-quark fragmentation into different beauty hadrons

- B^0/B^+ ratio independent of y and p_T, about 1-σ away from unity (isospin symmetry), explained by systematic uncertainties.
- $\Lambda_b^0/B^0 \approx 40\%$, decreasing with p_T, no hint of strong rapidity dependence. Similar to results in LHCb pp data [JHEP 08 (2014) 143]
- Λ_b^0/B^0 ratio reaches LEP data at high p_T, 0.20 ± 0.02 [arXiv:1612.07233]
- Production at positive rapidity $\approx 25\%$ lower compared with negative rapidity
- No evidence of p_T dependence with current precision
- In good agreement with the calculation using different nPDF sets.
- R_{FB} for B^+, B^0 and Λ_b^0 are compatible
Pattern consistent with R_{pA} of D^0 hadron

Significant suppression ($\approx 25\%$) in positive rapidity, suppression decreased at large p_T

Consistent with unity at negative rapidity

Measurements in good agreement with J/ψ-from-b decay data [PLB74 (2017) 159] and calculations using nPDF sets

Experimental uncertainties smaller than nPDF
\(\Lambda_b^0 \) and \(B^0 \) relative modification

- Ratio of \(R_{pA} \) between \(\Lambda_b^0 \) and \(B^0 \) hadrons

Consistent with unity in all kinematic bins \(\Rightarrow b \)-quark fragmentation function similar in pPb and pp collisions
Statistical uncertainty dominated, demanding more statistics to understand better
Summary and outlook

• LHCb has made unique contributions to heavy ion studies

• Studied production of $D^0, \Lambda_c^+, \Lambda_b^0$ baryon

 ➢ Precise data for prompt D^0 down to zero p_T: strong suppression in proton beam direction. Moderate nuclear effect at lead beam direction, hint of enhancement for extreme rapidity

 ➢ Prompt Λ_c^+/D^0 cross-section ratio consistent with expectation at low p_T, possible discrepancy at high p_T at positive rapidity

 ➢ First measurement of beauty hadrons using exclusive hadronic states. Nuclear effect for B^+ consistent with J/ψ-from-b data and similar to D^0 mesons.

 ➢ First direct measurement of Λ_b^0 baryon in heavy ion collisions, similar suppression compared to beauty mesons

• Millions of charm hadrons to be explored in new data ($\sqrt{s_{NN}} = 8.16$ TeV)

 ➢ $D^{0/+, D_s^+, \Lambda_c^+, \Xi_c^{+/0} \ldots$, Di-charm, correlations, track multiplicity dependence

• Improvement of beauty yields studying more decay modes

Thank you for your attention
Additional material
Separation from prompt and detached

Pseudo-decay time of ψ

$$t_z = \frac{(Z_{J/\Psi} - Z_{PV}) \times M_{J/\Psi}}{\sum}$$

IP of D^0

From B

prompt
LHCb experiment
Aiming for precision measurements in b, c sectors

Vertex Locator (vertex reconstruction)
- IP resolution: 20µm
- Decay time resolution: 45 fs ($\tau_B \sim 1.5$ ps)

RICH detectors ($K/\pi/p$ separation)
- $\epsilon(K \rightarrow K) \sim 95\%$
- Mis-ID $\epsilon(\pi \rightarrow K) \sim 5\%$

Calorimeters (ECAL, HCAL) (e/γ identification)
- $\delta E/E \sim 1\% + 10\% \sqrt{E}$ (GeV)

Tracking system, TT T1-T3 (particle reconstruction)
- ϵ(Tracking) $\sim 96\%$
- $\delta p/p \sim 0.5\% - 1\%$ (5-200 GeV)
- $\sigma(m_{B \rightarrow hh}) \approx 22$ MeV

Bending magnet
- Bending power: 4 Tm

Herschel
- -7.5m, -20m, -114m

Muon system (μ identification)
- $\epsilon(\mu \rightarrow \mu) \sim 97\%$
- Mis-ID $\epsilon(\mu \rightarrow \mu) \sim 1 - 3\%$

250 mrad

Yanxi ZHANG (CERN)
LHCb experiment

Decays: $b \rightarrow c \rightarrow s \,(K^{\pm})$; Baryon \rightarrow proton

RICH detectors ($K/\pi/p$ separation)
- $\epsilon(K \rightarrow K) \sim 95\%$ for $r(\pi \rightarrow K) \sim 5\%$

JINST 3 (2008) S08005
IJMPA 30 (2015) 1530022

Yanxi ZHANG (CERN)

EPS-HEP 2019
Prompt D^0 cross-section

- Differential cross-sections
R_{pA}: double differential

- Fixing p_T region, R_{pA} increases from proton to lead beam direction
- For the same y, R_{pA} increases with p_T, from strong suppression to moderate suppression for positive rapidity, small suppression at very low p_T and hint of enhancement at high p_T
- Large enhancement when getting closer to lead beam rapidity
Open charm vs charmonium

• (Double) ratios

JHEP 10 (2017) 090

Yanxi ZHANG (CERN)
Charm baryons over mesons

- Ratios

\[R_{A_c^+/D^0} \]

LHCb

\[p\text{Pb } \sqrt{s_{NN}} = 5 \text{ TeV} \]

\[2.0 < p_T < 10.0 \text{ GeV}/c \]

Yanxi ZHANG (CERN)
Baryon over meson ratio

- Overall scale is different in LHCb and ALICE in pp collisions
- Unexpected rapidity dependence

![Graphs showing the baryon over meson ratio for LHCb and ALICE in pp collisions.](image)

JHEP 04 (2018) 108
JHEP 10 (2017) 090
Cross-sections (cont.)

Similar p_T and y distributions for B^+, B^0 and Λ_b^0 hadrons
Forward backward ratio

Principle Results

- The magnitude of R_{FB} for B^+, B^0 and Λ_b^0 are compatible.

Graphical Representation:
- Two plots showing the forward-backward ratio R_{FB} for B^+ and p_{T}, with data points and shaded regions indicating the range of values for $2 < p_T < 20 \text{ GeV/c}$.

Notation and Symbols:
- R_{FB}: Forward-backward ratio
- B^+, B^0, Λ_b^0: Particle species
- p_{T}: Transverse momentum
- LHCb: Longitudinal Chromatic Bubbles
- $\sqrt{s_{NN}} = 8.16 \text{ TeV}$: Center-of-mass energy
$B_s^0 \rightarrow D_s^- \pi^+$ mass

![Graph 1](Fwd: N_{sig} \sim 270)

![Graph 2](Bwd: N_{sig} \sim 220)

Signal yield much smaller due to small production and branching fraction. Due to smaller $f_{B_s^0}$ and $B(B_s^0 \rightarrow D_s^- \pi^+) \times B(D_s^- \rightarrow K^+ K^- \pi^+)$