

Measurement of open-charm hadron production in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ with the STAR experiment

Robert Licenik (for the STAR collaboration)

Nuclear Physics Institute, Czech Academy of Sciences

EPS-HEP 2019, Ghent

July 11, 2019

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

PHYSICS MOTIVATION

- In Au+Au collisions at RHIC energies, charm quarks are produced predominantly through initial hard partonic scatterings
 - They experience entire evolution of medium
- Open-charm hadron measurements study:
 - Charm quark energy loss in medium
 - D⁰ and D[±] nuclear modification factor
 - Charm quark transport in medium
 - D⁰ elliptic and triangular flow
 - Charm quark hadronization process
 - D_s/D^0 and Λ_c/D^0 yield ratio
 - Initial tilt of bulk + initial electromagnetic field
 - D⁰ directed flow

STAR DETECTOR

- STAR Solenoidal Tracker At RHIC
- $\circ~$ Time Projection Chamber (TPC) and Time Of Flight (TOF)
 - Particle momentum (TPC) and identification (TPC and TOF)
- Heavy Flavor Tracker (HFT, 2014–2016): 4-layer silicon detector
 - MAPS 2 innermost layers, Strip detectors 2 outer layers

Robert Licenik - Open Charm Production at STAR

STAR DETECTOR

- STAR Solenoidal Tracker At RHIC
- Time Projection Chamber (TPC) and Time Of Flight (TOF)
 - Particle momentum (TPC) and identification (TPC and TOF)
- Heavy Flavor Tracker (HFT, 2014–2016): 4-layer silicon detector
 - MAPS 2 innermost layers, Strip detectors 2 outer layers

Robert Licenik - Open Charm Production at STAR

STAR DETECTOR

• STAR - Solenoidal Tracker At RHIC

A DE REAL PROPERTY OF THE PARTY OF THE PARTY

- Time Projection Chamber (TPC) and Time Of Flight (TOF)
 - Particle momentum (TPC) and identification (TPC and TOF)
- Heavy Flavor Tracker (HFT, 2014–2016): 4-layer silicon detector
 - MAPS 2 innermost layers, Strip detectors 2 outer layers

Robert Licenik - Open Charm Production at STAR

track 3

track 2

DCA23

DCA13

р

 Δ_{max}

DCA₁₂

SV

OPEN-CHARM HADRON RECONSTRUCTION

- Data from Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV acquired with HFT in years 2014 and 2016
- HFT allows direct **topological reconstruction** of open-charm hadrons via their hadronic decays
- Significant suppression of combinatorial background
- Decay channels used*:
 - $D^+ \rightarrow K^- \pi^+ \pi^+$ $c_{\tau} = (311.8 \pm 2.1) \, \mu m$ BR = (8.98 ± 0.28) %
 - $D^0 \rightarrow K^-\pi^+$ $c_\tau = (122.9 \pm 0.4) \,\mu m$ BR = $(3.93 \pm 0.04) \,\%$
 - $D_s \rightarrow \pi^+ \phi, \phi \rightarrow K^- K^+$ $c_\tau = (149.9 \pm 2.1) \,\mu m$ BR = (2.27 ± 0.08) %
 - $\Lambda_c \rightarrow K^-\pi^+ p$ $c\tau = (59.9 \pm 1.8) \,\mu m$ BR = (6.35 ± 0.33) %

*charge conjugates also reconstructed

track 1

D⁰ AND D[±] NUCLEAR MODIFICATION FACTOR D⁰ (STAR): Phys. Rev. C 99, 034908, (2019). T[±] (STAR): Phys. Lett. B 655, 104 (2007)

- Nuclear modification factor:

 $R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N_{\rm D}^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle {\rm d}N_{\rm D}^{\rm pp}/{\rm d}p_{\rm T}}$

- Reference: combined D⁰ and D* measurement in 200 GeV p+p $_{1}$ collisions using 2009 STAR data (extrapolated to low and high p_{T})
- D mesons suppressed in central Au+Au collisions
 - Suppression of D⁰ mesons at high p_T comparable to light-flavor hadrons at RHIC and D mesons at LHC
 - Reproduced by models incorporating both radiative and collisional energy losses
 - Similar level of suppression for D[±] and D⁰
- $\circ\,$ Strong interaction between charm quarks and medium

CENTRALITY DEPENDENCE OF D⁰ $R_{AA}(p_T)$

- Suppression at high p_{T} increases with collision centrality
- D⁰ with p_T < 2.5 GeV/c suppressed for all studied centrality classes of Au+Au collisions
- HFT dramatically improves precision
- Systematic errors dominated by p+p reference

D⁰ 2014 (STAR): Phys. Rev. C 99, 034908, (2019). D⁰ 2010/11 (STAR): Phys. Rev. C 99, 034908, (2019).

D⁰ COLLECTIVE BEHAVIOR

• Elliptic (triangular) flow = second (third) order Fourier coefficient $v_2(v_3)$ of azimuthal distribution:

$$E\frac{\mathrm{d}^3 N}{\mathrm{d}^3 p} = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_{\mathrm{T}} \mathrm{d} p_{\mathrm{T}} \mathrm{d} y} \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_n)) \right]$$

- Improved precision from combined 2014+2016 data than published 2014 results
- $\circ~{\rm D^0}~v_2^{}$ and $v_3^{}$ follow Number of Constituent Quarks (NCQ) scaling
 - Significant elliptic and triangular flow of D⁰
 - Strong collective behavior of charm quarks
- Charm quarks may have achieved local thermal equilibrium with QGP

 $v_2 D^0$ (2014): Phys. Rev. Lett, 118, 212301 (2017) v_2 , light flavor: Phys. Rev. C 77, 054901 (2008).

Ko: Phys.Rev.C 79 (2009) 044905

Λ_/D⁰ YIELD RATIO ENHANCEME

- Open-charm baryon/meson yield ratio Ο
- Centrality dependence
 - Enhancement of ratio increases towards central collisions
 - Value in peripheral collisions consistent with ALICE p+p results at $\sqrt{s} = 7$ TeV
- \circ p_T dependence
 - Significant enhancement with respect to PYTHIA 6.4 p+p prediction
 - Statistical Hadronization Model (SHM) under-predicts ratio from data extrapolated to zero p_{τ}
 - Coalescence models closer to data than **PYTHIA**
 - Importance of coalescence hadronization of charm quarks

Robert Licenik - Open Charm Production at STAR

ALICE: JHEP 04 (2018) 108

Greco: Eur.Phys.J.C (2018) 78:348 SHM: Phys. Lett. B (2003), 571, 36-44

D_s/D⁰ YIELD RATIO ENHANCEMENT

- $\circ D_{s}/D^{0}$ yield ratio as a function of p_{T}
- Enhancement of D_s/D⁰ ratio in Au+Au collisions with respect to PYTHIA p+p baseline and elementary collisions (ee/pp/ep average)
- Comparison to models:
 - TAMU model with coalescence hadronization shows enhancement, but underpredicts data
 - SHM in good agreement with data
- Importance of coalescence hadronization of charm quarks together with enhanced strangeness production

ep/pp/ep avg: EPJ C 76, 397 (2016) TAMU: PRL 110, 112301 (2013) SHM: Phys. Lett. B (2003), 571, 36-44

TOTAL CHARM PRODUCTION CROSS-SECTION

- Total charm production cross-section per binary collision in Au+Au extracted from measurements of open-charm hadrons
- Au+Au result is consistent with that measured in p+p collisions within uncertainties
- Redistribution of charm quarks among open-charm hadron species

Coll. system	Hadron	d <i>σ</i> /d <i>y</i> [μb]
Au+Au at 200 GeV Centrality: 10-40%	D^0	41 ± 1 ± 5
	D±	18 ± 1 ± 3
	D _s	15 ± 1 ± 5
	\wedge_{c}	78 ± 13 ± 28 *
	Total:	152 ± 13 ± 29
p+p at 200 GeV	Total:	130 ± 30 ± 26

* Λ_c cross-section was derived using Λ_c/D^0 yield ratio

Robert Licenik - Open Charm Production at STAR

 $\begin{array}{l} D^0 \ 2014 \ (STAR): \ Phys. \ Rev. \ C \ 99, \ 034908, \ (2019). \\ D^0 \ 2010/11 \ (STAR): \ Phys. \ Rev. \ C \ 99, \ 034908, \ (2019). \\ p+p \ (STAR): \ Phys. \ Rev. \ D \ 86 \ 072013, \ (2012). \end{array}$

D⁰ DIRECTED FLOW - MOTIVATION

- Hydrodynamics
 - Difference between tilt of bulk and longitudinal density profile of heavy flavor production
 - Expected larger slope dv₁/dy of charm than light flavors
- Initial EM field from passing spectators
 - Predicted negative dv₁/dy slope for D⁰ and positive for D
 ⁰
- Hydrodynamics + EM field
 - Expected larger slope for D^0 than \overline{D}^0
 - dv₁/dy slope stays negative for both D⁰
 and D
 ⁰

Das et. al., Phys Lett B 768, 260 (2017) Chatterjee, Bozek: arXiv:1804.04893

D⁰ DIRECTED FLOW - RESULTS

- First evidence of non-zero directed flow (v_1) of D⁰ and \overline{D}^0 as function of rapidity (y)
- Negative dv_1/dy slope for both D⁰ and \overline{D}^0
- Significantly larger dv_1/dy slope than kaons
- No EM-induced splitting observed within uncertainties
- Measurement of D⁰ directed flow can be used to probe difference between tilt of QGP bulk and longitudinal density profile of heavy flavor production

CONCLUSIONS

- STAR has extensively studied production of **open-charmed hadrons** in heavy-ion collisions utilizing **Heavy Flavor Tracker**
- Charm quarks interact strongly with QGP and are possibly in local thermal equilibrium with medium
 - D⁰ and D[±] meson production in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV is **significantly suppressed** at high- p_{T}
 - D^0 meson v_2 and v_3 follow NCQ scaling
- Coalescence likely plays important role in hadronization of charm quarks in A+A collisions
 - Λ_c/D⁰ and D_s/D⁰ yield ratios are enhanced in Au+Au collisions with respect to p+p collisions
- Total charm production cross-section per binary collision in Au+Au collisions is consistent with that measured in p+p collisions
 - **Redistribution of charm** quarks among open-charm hardon species
- Charm quarks can probe **initial tilt of QGP bulk** with respect to longitudinal density profile of heavy flavor production
 - D^0 mesons have larger v_1 slope than light-flavor mesons

EVENT AND TRACK SELECTION

- Event selection cuts
 - Position of primary vertex along beam axis
- $\circ~$ Track quality cuts
 - p_T suppresses combinatorial background from low
 - $|\eta| < 1$ detector acceptance
 - Minimum number of hits in TPC for each track go
- Particle identification (PID)
 - TPC energy loss of charged particle
 - TOF velocity of charged particles
- $\circ~$ Topological cuts
 - Possible only with use of HFT
 - Constrain topology of reconstructed secondary ver
 - Suppress combinatorial background

EVENT AND TRACK SELECTION

10⁴ Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV}$ TPC PID • Event selection cuts 10³ dE/dx (KeV/cm) Position of primary vertex along beam axis • Track quality cuts 3.5 10² • p_{T} – suppresses combinatorial background from 3 ■ $|\eta| < 1$ – detector acceptance 25 10 Minimum number of hits in TPC for each track – STAR Preliminary - RHIC Year 2014 1.5 • Particle identification (PID) 3 Charge × |Momentum| (GeV/c) TPC – energy loss of charged particles in TPC TOF – velocity of charged particles 3.5 Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV}$ • Topological cuts TOF PID: $\beta = \frac{L}{ct}$ Possible only with use of HFT 10³ Constrain topology of reconstructed secondary 2.5 Suppress combinatorial background 1/ß 10² 1.5 10 STAR Preliminary - RHIC Year 2014 0.5 2.5 0.5 1.5 0 IMomentumI (GeV/c)