

Istituto Nazionale di Fisica Nucleare ALICE Study of RAA and v2 of non-strange D mesons and D-jet production in **Pb-Pb collisions with ALICE**

Fabrizio Grosa on behalf of the ALICE Collaboration **Politecnico and INFN Torino** European Physical Society - Conference on High Energy Physics 2019

Ultra-relativistic heavy-ion collisions and quark-gluon plasma

Under extreme conditions of very high temperature and/ or density, quantum chromodynamics (QCD) calculations on the lattice predict a phase transition from the ordinary nuclear matter to a colour-deconfined medium, called quark-gluon plasma (QGP)

The QGP can be recreated in the laboratory via ultrarelativistic heavy-ion collisions

(i) pre-equilibrium

(ii) QGP formation and thermalisation (iii) hadronisation

(iv) freeze out (chemical and kinetic)

Heavy-flavour hadrons in Pb-Pb collisions

Incoming Heavy Ion Beams

- Properties of in-medium energy loss studied via the nuclear modification factor $R_{AA} \rightarrow$ quark-mass, colour-charge, path length dependencies
- Study in-medium colour/mass dependent energy loss and modification of internal jet sub-structure with heavy-flavour jets
- Possible modification of the hadronisation mechanism investigated via the measurement of relative abundances of different hadron species

Heavy flavours (HF), i.e. charm and beauty quarks, are mainly produced in hard-scattering processes in shorter time scales compared to the QGP formation time IF probe the entire space-time evolution of the system, loosing energy interacting with the medium constituents via elastic scatterings and gluon radiations

 dN_{AA}/dp_{T} R_{AA} dN_{pp}/dp_T NAA `COII/

Heavy-flavour hadron azimuthal anisotropies in Pb-Pb collisions

- The initial geometrical anisotropy is converted via multiple interactions into an azimuthally anisotropic distribution in momentum space of the produced particles
- Azimuthal anisotropies can be studied via the Fourier decomposition of the azimuthal distribution of particle momenta

$$E\frac{\mathrm{d}^3 N}{\mathrm{d}p_{\mathrm{T}}} = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_{\mathrm{T}} \mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \left\{ 1 + \sum_{i=1}^{\infty} v_{\mathrm{n}} \cos[\mathrm{n}(\varphi - \Psi_{\mathrm{n}})] \right\}$$

$$v_2 = \langle \cos[2(\varphi - \Psi_2)] \rangle$$

second harmonic coefficient, elliptic flow

- Solution Asymmetry between the in-plane (parallel to Ψ_2) and out-of plane (orthogonal to Ψ_2) regions At low *p*_T: participation in the collective motion and possible thermalisation of heavy quarks in the medium
- At high *p*_T: path-length dependence of energy loss

Time Projection Chamber

Track reconstruction Particle identification via specific energy loss

Time Projection Chamber

- Track reconstruction
- Particle identification via specific energy loss

Inner Tracking System Track reconstruction Reconstruction of primary and decay vertices

Time Projection Chamber

- Track reconstruction
- Particle identification via specific energy loss

Inner Tracking System

- Track reconstruction
- Reconstruction of primary and decay vertices

Time of Flight detector Particle identification via the

time-of-flight measurement

Time Projection Chamber

- Track reconstruction
- Particle identification via specific energy loss

V0 detectors

- Trigger
- Centrality estimation
- Event-plane estimation

Time Projection Chamber

- Track reconstruction
- Particle identification via specific energy loss

V0 detectors

- Trigger
- Centrality estimation
- Event-plane estimation

Non-strange D-meson reconstruction in ALICE

[1]	Meson	$M(\text{GeV}/c^2)$	decay	<i>cτ</i> (μm)	BR (%)
_	D ⁰ (cū)	1.865	$\mathrm{K} extsf{-}\pi^+$	123	3.89
	$D^{+}(c\bar{d})$	1.870	$\mathrm{K} extsf{-}\pi^+\pi^+$	312	8.98
-	$D^{*+}(c\bar{d})$	2.010	$D^0 (\rightarrow K^- \pi^+) \pi^+$	strong decay	2.66

D-meson candidates built combining pairs/triplets of tracks reconstructed at mid-rapidity ($|\eta| < 0.8$) with proper charge

11/07/2019

Non-strange D-meson and jet reconstruction in ALICE

[1]	Meson	$M(\text{GeV}/c^2)$	decay	<i>cτ</i> (μm)	BR (%)
_	D ⁰ (cū)	1.865	$\mathrm{K} extsf{-}\pi^+$	123	3.89
	$D^{+}(c\bar{d})$	1.870	$\mathrm{K} extsf{-}\pi^+\pi^+$	312	8.98
-	$D^{*+}(c\bar{d})$	2.010	$D^0 (\rightarrow K^- \pi^+) \pi^+$	strong decay	2.66

D-meson candidates built combining pairs/triplets of tracks reconstructed at mid-rapidity ($|\eta| < 0.8$) with proper charge

11/07/2019

- Track-based jet reconstruction
- Anti- $k_{\rm T}$ algorithm with R = 0.3
- $p_{\rm T}$ (ch jet) > 5 GeV/c

Non-strange D-meson and jet reconstruction in ALICE

[1]	Meson	$M(\text{GeV}/c^2)$	decay	<i>cτ</i> (μm)	BR (%)
_	D ⁰ (cū)	1.865	$\mathrm{K} extsf{-}\pi^+$	123	3.89
	$D^{+}(c\bar{d})$	1.870	$\mathrm{K} extsf{-}\pi^+\pi^+$	312	8.98
-	$D^{*+}(c\bar{d})$	2.010	$D^0 (\rightarrow K^- \pi^+) \pi^+$	strong decay	2.66

D-meson candidates built combining pairs/triplets of tracks reconstructed at mid-rapidity ($|\eta| < 0.8$) with proper charge

11/07/2019

- Track-based jet reconstruction
- Anti- $k_{\rm T}$ algorithm with R = 0.3
- $p_{\rm T}$ (ch jet) > 5 GeV/c

- D⁰-tagged jets: D⁰ candidate with p_T > 3 GeV/*c* required to be among the jet constituents
- \therefore K and π tracks replaced by D⁰

D-meson *R*_{AA} in Pb-Pb collisions

Increasing suppression from
peripheral (60-80%) to central
(0-10%) Pb-Pb collisions

SIFEP 1810 (2018) 174

D-meson *R*_{AA} in Pb-Pb collisions

Increasing suppression from peripheral (60-80%) to central (0-10%) Pb-Pb collisions

D mesons Charged pions Charged particles JHEP 1811 (2018) 013 $R_{AA}(D) > R_{AA}(\pi^{\pm})$ for $p_{\rm T} < 8 \text{ GeV/}c$ $\rightarrow N_{\text{coll}}$ vs. N_{part} scaling at low $p_{\rm T}$, different fragmentation and initial spectra shapes,

possible mass and Casimir factor effects, different coalescence and radial flow

 $R_{AA}(D) \simeq R_{AA}(\pi^{\pm}) \simeq R_{AA}(charged particles)$ for $p_T > 8 \text{ GeV}/c$

D-meson abundances in Pb-Pb collisions

For a complete picture also the relative abundance of strange D mesons Ş and the charmed baryons has to be compared in pp and Pb-Pb

EPJ C79 (2019) no 5, 388

No observed modification of the non-strange D-meson relative abundances from pp to Pb-Pb collisions

➡ L. Vermunt 12/07 9:00

D-meson *R*_{AA} in Pb-Pb collisions vs. models

TAMU: PLB 735, 445-450 (2014) **PHSD:** PRC 92, 014910 (2015) **POWLANG: EPJC 75, 121 (2015)** **MC@sHQ+EPOS: PRC 89, 014905 (2014)** *Solutionary Elipsical States and States and* **BAMPS: JPG 42, 115106 (2015)** Section Catania: EPJC 78, 348 (2018)

Low p_T D-meson *R*_{AA} described by transport models based on Boltzmann/ Fokker-Plank/ Langevin equations

D-meson *R*_{AA} in Pb-Pb collisions vs. models

TAMU: PLB 735, 445-450 (2014) **PHSD:** PRC 92, 014910 (2015) **POWLANG: EPJC 75, 121 (2015)** **MC@sHQ+EPOS: PRC 89, 014905 (2014)** *Solutionary Elipsical States and States and* **BAMPS: JPG 42, 115106 (2015)** *Catania: EPJC 78, 348 (2018)*

Low p_T D-meson *R*_{AA} described by transport models based on Boltzmann/ Fokker-Plank/ Langevin equations

High *p*_T D-meson *R*_{AA} described by pQCD-based models

Solution Djordevic: PRC 92, 024918 (2015) **CUJET3.0: JHEP 02 (2016) 169** SCET: JHEP 03 (2017) 146

D-meson production in jets in Pb-Pb collisions

11/07/2019

Charged jets D-meson tagged jets

Fint of smaller R_{AA} for low- p_T D-meson tagged jets compared to higher *p*_T charged jets

D-meson production in jets in Pb-Pb collisions

11/07/2019

Charged jets D-meson tagged jets D mesons JHEP 1810 (2018) 174

- Fint of smaller R_{AA} for low- p_T D-meson tagged jets compared to higher *p*_T charged jets
- Similar *R*_{AA} for D-meson tagged jets and D mesons

D-meson production in jets in Pb-Pb collisions

11/07/2019

Charged jets D-meson tagged jets D mesons JHEP 1810 (2018) 174

- Fint of smaller R_{AA} for low- p_T D-meson tagged jets compared to higher *p*_T charged jets
- Similar *R*_{AA} for D-meson tagged jets and D mesons
- D-jet analysis performed with 2015 data possibility to improve precision and extend *p*_T coverage with 2018 data sample (x9 more central collisions than 2015 data sample)

D-meson elliptic flow in Pb-Pb collisions

11/07/2019

D mesons

Charged pions JHEP 1809 (2018) 006 Charged particles JHEP 07 (2018) 103 J/Ψ JHEP 02 (2019) 012

- Positive D-meson v_2 in mid-central Pb-Pb collisions indicates participation of charm quark in the collective motion $v_2(D) \approx v_2(\pi^{\pm})$ for $p_T > 3-4$ GeV/c
- Solution $V_2(D) < v_2(\pi^{\pm}) \text{ for } p_T < 3-4 \text{ GeV}/c$
- ^{\$}ν₂(D) > ν₂(J/Ψ) for p_T < 6 GeV/c
 explained by charm-quark coalescence
 with flowing light-flavour quarks
 </p>

Event-shape engineering for the D-meson *v*₂

The Event-shape engineering (ESE) technique relies on the classification of events according to their eccentricity, using the magnitude of the second-harmonic reduced flow vector:

Solution Measurement of D-meson v_2 in ESE-selected samples indicate a positive correlation between the D-meson *v*₂ and the light-hadron *v*₂

Fabrizio Grosa

12/14

Event-shape engineering for the D-meson v₂ vs. models

- Models based on charmquark transport in an hydrodynamically expanding medium describe reasonably q_2 dependence of elliptic flow
- Variation of D-meson v₂ in ESE-selected samples with respect to unbiased sample similar for different transport parameters (e.g. POWLANG HLT vs. lQCD) pure geometrical effect?

POWLANG: arXiv:1812.08337 LIDO: PRC 98, 064901 (2018) Section 2016 (2016) Section 2017 (2016)

- Non-strange D-meson *R*_{AA} in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shows a strong suppression, increasing with collision centrality
- R_{AA} (D) > R_{AA} (light hadrons) for $p_T < 8 \text{ GeV}/c$ quark-mass / colour-charge dependence
- Similar *R*_{AA} for D-meson tagged jets and D mesons
- Positive D-meson elliptic flow
 - participation of charm quark in the collective motions
 - \rightarrow at low $p_T v_2$ (D) > $v_2 (J/\Psi)$ explained by charmquark coalescence with flowing light-flavour quarks
- ESE technique
 - positive correlation between D and light-hadron *v*² reasonably described by transport models

- Non-strange D-meson *R*_{AA} in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shows a strong suppression, increasing with collision centrality
- R_{AA} (D) > R_{AA} (light hadrons) for $p_T < 8 \text{ GeV}/c$ quark-mass / colour-charge dependence
- Similar *R*_{AA} for D-meson tagged jets and D mesons
- Positive D-meson elliptic flow
 - participation of charm quark in the collective motions
 - \rightarrow at low $p_T v_2$ (D) > $v_2 (J/\Psi)$ explained by charmquark coalescence with flowing light-flavour quarks
- ESE technique
 - positive correlation between D and light-hadron *v*² reasonably described by transport models

- Non-strange D-meson *R*_{AA} in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shows a strong suppression, increasing with collision centrality
- R_{AA} (D) > R_{AA} (light hadrons) for $p_T < 8 \text{ GeV}/c$ quark-mass / colour-charge dependence
- Similar *R*_{AA} for D-meson tagged jets and D mesons
- Positive D-meson elliptic flow
 - participation of charm quark in the collective motions
 - \rightarrow at low $p_T v_2$ (D) > $v_2 (J/\Psi)$ explained by charmquark coalescence with flowing light-flavour quarks
- ESE technique
 - positive correlation between D and light-hadron *v*² reasonably described by transport models

- Non-strange D-meson *R*_{AA} in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shows a strong suppression, increasing with collision centrality
- R_{AA} (D) > R_{AA} (light hadrons) for $p_T < 8 \text{ GeV}/c$ quark-mass / colour-charge dependence
- Similar *R*_{AA} for D-meson tagged jets and D mesons
- Positive D-meson elliptic flow
 - participation of charm quark in the collective motions
 - \Rightarrow at low $p_T v_2$ (D) > $v_2 (J/\Psi)$ explained by charmquark coalescence with flowing light-flavour quarks
- ESE technique
 - positive correlation between D and light-hadron *v*² reasonably described by transport models

- Non-strange D-meson *R*_{AA} in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shows a strong suppression, increasing with collision centrality
- R_{AA} (D) > R_{AA} (light hadrons) for $p_T < 8 \text{ GeV}/c$ quark-mass / colour-charge dependence
- Similar *R*_{AA} for D-meson tagged jets and D mesons
- Positive D-meson elliptic flow
 - participation of charm quark in the collective motions
 - \rightarrow at low $p_T v_2$ (D) > $v_2 (J/\Psi)$ explained by charmquark coalescence with flowing light-flavour quarks
- ESE technique
 - positive correlation between D and light-hadron *v*² reasonably described by transport models

D-meson *R*_{AA} in Pb-Pb collisions

 \mathbb{P} D⁰, D⁺, and D^{*+} R_{AA} is compatible within uncertainties

11/07/2019

D-meson *R*_{AA} in Pb-Pb collisions 2018 VS. 2015

- Improved precision in 2018
- Solution \mathbb{S} More differential measurement in 2018 allows for a better description of the $p_{\rm T}$ shape

D-meson v₂ in Pb-Pb collisions 2018 VS. 2015

11/07/2019

D-meson elliptic flow in Pb-Pb collisions

Solution P_2 D-meson v_2 measured at mid-rapidity (|y| < 0.8) using the scalar-product (SP) method

$$v_{2}\{\text{SP}\} = \frac{\langle u_{2,\text{D}}Q_{2,\text{A}}^{*}/M_{\text{A}} \rangle}{\sqrt{\frac{\langle Q_{2,\text{A}}/M_{\text{A}}Q_{2,\text{B}}^{*}/M_{\text{B}} \rangle \langle Q_{2,\text{A}}/M_{\text{A}}Q_{2,\text{C}}^{*}/M_{\text{C}} \rangle}}{\langle Q_{2,\text{B}}/M_{\text{B}}Q_{2,\text{C}}^{*}/M_{\text{C}} \rangle}} \text{ where }$$

Figure The v_2 of the signal is extracted from a v_2 vs mass fit:

$$v_2(M) = \frac{S}{S+B}v_2^{\text{sgn}} + \frac{B}{S+B}v_2^{\text{sgn}} + \frac{B}{S+B}v_2^{\text{sgn$$

D-meson v_2 vs. models

Event-shape engineering selection

harmonic reduced flow vector

Fabrizio Grosa

20/14

ESE-selected D-meson yields

11/07/2019

POWLANG: arXiv:1812.08337

ESE-selected charged-particle v₂

11/07/2019

PRC 93, 034916 (2016)

