Measurements of p_T -differential v_2 and v_3 using multi-particle cumulants in Pb-Pb and Xe-Xe collisions

Vytautas Vislavicius for the ALICE Collaboration

Heavy-ion collision geometry

- Partial overlap between colliding projectiles, spatial anisotropy of colliding nucleons give rise to pressure gradients...
- ... which result in anisotropies in (produced) particle azimuthal angular distributions
 - -> Particles "flow"

Heavy-ion collision geometry

- Partial overlap between colliding projectiles, spatial anisotropy of colliding nucleons give rise to pressure gradients...
- ... which result in anisotropies in (produced) particle azimuthal angular distributions
 - -> Particles "flow"
 - Elliptic flow (v_2), triangular flow (v_3), etc...

Studying the flow of final state hadrons we can learn about medium properties and initial conditions in heavy-ion collisions

How do we measure flow?

Several techniques: Fourier decomposition, Q-cumulants...

From 2-particle correlations:

$$c_n\{2\} = \langle \langle 2 \rangle \rangle_n = \langle v_n^2 \rangle$$

$$d_n\{2\} (p_T) = \langle \langle 2' \rangle \rangle_n = \langle v_n (p_T) \cdot v_n \rangle$$

$$v_n\{2\} (p_T) = \frac{d_n\{2\} (p_T)}{\sqrt{c_n\{2\}}}$$

How do we measure flow?

Several techniques: Fourier decomposition, Q-cumulants...

From 2-particle correlations:

$$c_n\{2\} = \langle \langle 2 \rangle \rangle_n = \langle v_n^2 \rangle$$

$$d_n\{2\} (p_T) = \langle \langle 2' \rangle \rangle_n = \langle v_n (p_T) \cdot v_n \rangle$$

$$v_n\{2\} (p_T) = \frac{d_n\{2\} (p_T)}{\sqrt{c_n\{2\}}}$$

Short-range correlations (e.g. jets) introduce bias in correlation function -> Non-flow

How do we measure flow?

Several techniques: Fourier decomposition, Q-cumulants...

From 2-particle correlations:

$$c_{n}\{2\} = \langle\langle 2\rangle\rangle_{n} = \langle v_{n}^{2}\rangle$$

$$d_{n}\{2\}(p_{T}) = \langle\langle 2'\rangle\rangle_{n} = \langle v_{n}(p_{T}) \cdot v_{n}\rangle$$

$$v_{n}\{2\}(p_{T}) = \frac{d_{n}\{2\}(p_{T})}{\sqrt{c_{n}\{2\}}}$$

Short-range correlations (e.g. jets) introduce bias in correlation function -> Non-flow

To suppress short-range correlations, introduce η gap, only construct pairs from opposite regions:

How do we measure flow?

Several techniques: Fourier decomposition, Q-cumulants...

From 2-particle correlations:

$$c_{n}\{2\} = \langle\langle 2\rangle\rangle_{n} = \langle v_{n}^{2}\rangle$$

$$d_{n}\{2\}(p_{T}) = \langle\langle 2'\rangle\rangle_{n} = \langle v_{n}(p_{T}) \cdot v_{n}\rangle$$

$$v_{n}\{2\}(p_{T}) = \frac{d_{n}\{2\}(p_{T})}{\sqrt{c_{n}\{2\}}}$$

Can also calculate from 4-particle correlation:

$$c_n\{4\} = \langle \langle 4 \rangle \rangle_n - 2\langle \langle 2 \rangle \rangle_n^2$$

$$d_n\{4\} (p_T) = \langle \langle 4' \rangle \rangle_n - 2\langle \langle 2 \rangle \rangle \langle \langle 2' \rangle \rangle_n$$

$$v_n\{4\} (p_T) = \frac{d_n\{4\} (p_T)}{\sqrt[-3/4]{-c_n\{4\}}}$$

Short-range correlations (e.g. jets) introduce bias in correlation function -> Non-flow

To suppress short-range correlations, introduce η gap, only construct pairs from opposite regions:

The ALICE detector

A Large Ion Collider Experiment: multi-purpose detector at the LHC with excellent tracking & particle identification capabilities in a wide p_T range (0.1 GeV/c to ~20 GeV/c for PID, up to 50 GeV/c for unidentified)

- Inner Tracking System (ITS)
 - Tracking
 - Triggering
 - PID
- Time-Projection Chamber
 - Tracking
 - PID
- V0 detector
 - VOA (2.8 < η < 5.1)
 - **VOC** ($-3.7 < \eta < -1.7$)
 - Triggering
 - Multiplicity estimation

Plethora of v_2 {2,4,6,8} measurements in ALICE, with different η gaps,

Plethora of v_2 {2,4,6,8} measurements in ALICE, with different η gaps, and also v_3 {2,4}

- $v_2\{m\}$ in central Pb—Pb collisions:
- v_2 {2} larger than v_2 {4,6,8}: fluctuations and non-flow

• Non-flow in $v_2\{2\}$ suppressed by η -gap; $v_2\{4,6,8\}$ not affected by η -gap

- $v_2\{m\}$ in central Pb—Pb collisions:
- v_2 {2} larger than v_2 {4,6,8}: fluctuations and non-flow
- Non-flow in $v_2\{2\}$ suppressed by η -gap; $v_2\{4,6,8\}$ not affected by η -gap
- v_2 sensitive to geometry, increases when going peripheral

pt-differential v_n{m} in Pb-Pb collisions

- $v_2\{m\}$ in central Pb—Pb collisions:
- v_2 {2} larger than v_2 {4,6,8}: fluctuations and non-flow
- Non-flow in $v_2\{2\}$ suppressed by η -gap; $v_2\{4,6,8\}$ not affected by η -gap
- v_2 sensitive to geometry, increases when going peripheral

$v_3\{m\}$ in Pb—Pb collisions:

• At high p_T dominated by non-flow, suppressed with η -gap

- v_2 {m} in central Pb—Pb collisions:
- v_2 {2} larger than v_2 {4,6,8}: fluctuations and non-flow
- Non-flow in $v_2\{2\}$ suppressed by η -gap; $v_2\{4,6,8\}$ not affected by η -gap
- v_2 sensitive to geometry, increases when going peripheral

$v_3\{m\}$ in Pb—Pb collisions:

- At high p_T dominated by non-flow, suppressed with η -gap
- Less sensitive to geometry (compared to v_2), more sensitive to colliding nucleon fluctuations

pt-differential v_n{m} in Pb-Pb collisions

- v_2 {m} in central Pb—Pb collisions:
- v_2 {2} larger than v_2 {4,6,8}: fluctuations and non-flow

- Non-flow in $v_2\{2\}$ suppressed by η -gap; $v_2\{4,6,8\}$ not affected by η -gap
- v_2 sensitive to geometry, increases when going peripheral

$v_3\{m\}$ in Pb—Pb collisions:

- At high p_T dominated by non-flow, suppressed with η -gap
- Less sensitive to geometry (compared to v_2), more sensitive to colliding nucleon fluctuations

What about smaller systems, eg Xe—Xe?

 v_2 in Xe-Xe: similar trends to those seen in Pb-Pb collisions

- $v_2{4,6} < v_2{2}$, fluctuations and non-flow
- η -gap suppresses non-flow, larger gap required

• In peripheral collisions, $v_2\{2\}$ is dominated by non-flow

 v_2 in Xe-Xe: similar trends to those seen in Pb-Pb collisions

- v_2 {4,6} < v_2 {2}, fluctuations and non-flow
- η -gap suppresses non-flow, larger gap required
- In peripheral collisions, $v_2\{2\}$ is dominated by non-flow

And similar for v_3 ...

p_T-differential v₂ PDFs

What can we learn from these measurements?

- If $v_2\{m\} \propto \varepsilon_2$, then $\frac{v_2\{4\}}{v_2\{6,8\}} = const$, independent of p_T
- If the probability density function of v_2 is given by the Bessel-Gaussian distribution, then $v_2\{4\} = v_2\{6,8\}$

p_T-differential v₂ PDFs

What can we learn from these measurements?

- If $v_2\{m\} \propto \varepsilon_2$, then $\frac{v_2\{4\}}{v_2\{6,8\}} = const$, independent of \textbf{p}_{T}
- If the probability density function of v_2 is given by the Bessel-Gaussian distribution, then $v_2\{4\} = v_2\{6,8\}$

But we find:

- v_2 distribution not described by the Bessel-Gaussian distribution
- Non-trivial evolution with p_T,
 -> Sensitive to medium transport parameters?

p_T-differential v₂ PDFs

 v_2 PDF: sensitive to geometry and evolution of the system. How does it look?

- Can calculate different moments of the distribution from $v_2\{m\}$ [1]:
- Skewness (γ₁) ~ -0.3 at low p_T (cf hydro [2])
- Kurtosis (γ_2) small, positive at low p_T , tails larger than Gaussian
- Higher p_T (\gtrsim 3): γ_1 and γ_2 consistent with 0, v_2 PDF approaches normal distribution

^{•[1]} Phys. Rev. C 95, 014913 [2] JHEP 1807, 103 (2018)

Summary

- p_T-differential measurements of flow coefficients using 6- and 8-particle correlations done for the first time in ALICE
- v₂{6} and v₂{8} show deviations from v₂{4}, indicating that the underlying PDF is not described by the Bessel-Gaussian distribution
- $v_2\{6\}/v_2\{4\}$ and $v_2\{8\}/v_2\{4\}$ ratios show non-trivial evolution with p_T
 - -> Might point to needed refinement of the traditional linear relation between v_n and ε_n
- Probability density function of v_2 is not constant in p_T (large left tail at low p_T , approaching normal distribution at ~3 GeV/c)

Backup

 $v_2\{m\}$ in central Pb—Pb collisions:

- v_2 {2} larger than v_2 {4,6,8}: fluctuations and non-flow
- Non-flow in $v_2\{2\}$ suppressed by η -gap; $v_2\{4,6,8\}$ not affected by η -gap
- v_2 sensitive to geometry when, increases when going peripheral

