Measurements of p_T -differential v_2 and v_3 using multi-particle cumulants in Pb-Pb and Xe-Xe collisions Vytautas Vislavicius for the ALICE Collaboration ### Heavy-ion collision geometry - Partial overlap between colliding projectiles, spatial anisotropy of colliding nucleons give rise to pressure gradients... - ... which result in anisotropies in (produced) particle azimuthal angular distributions - -> Particles "flow" #### **Heavy-ion collision geometry** - Partial overlap between colliding projectiles, spatial anisotropy of colliding nucleons give rise to pressure gradients... - ... which result in anisotropies in (produced) particle azimuthal angular distributions - -> Particles "flow" - Elliptic flow (v_2), triangular flow (v_3), etc... Studying the flow of final state hadrons we can learn about medium properties and initial conditions in heavy-ion collisions #### How do we measure flow? Several techniques: Fourier decomposition, Q-cumulants... From 2-particle correlations: $$c_n\{2\} = \langle \langle 2 \rangle \rangle_n = \langle v_n^2 \rangle$$ $$d_n\{2\} (p_T) = \langle \langle 2' \rangle \rangle_n = \langle v_n (p_T) \cdot v_n \rangle$$ $$v_n\{2\} (p_T) = \frac{d_n\{2\} (p_T)}{\sqrt{c_n\{2\}}}$$ #### How do we measure flow? Several techniques: Fourier decomposition, Q-cumulants... From 2-particle correlations: $$c_n\{2\} = \langle \langle 2 \rangle \rangle_n = \langle v_n^2 \rangle$$ $$d_n\{2\} (p_T) = \langle \langle 2' \rangle \rangle_n = \langle v_n (p_T) \cdot v_n \rangle$$ $$v_n\{2\} (p_T) = \frac{d_n\{2\} (p_T)}{\sqrt{c_n\{2\}}}$$ Short-range correlations (e.g. jets) introduce bias in correlation function -> Non-flow #### How do we measure flow? Several techniques: Fourier decomposition, Q-cumulants... From 2-particle correlations: $$c_{n}\{2\} = \langle\langle 2\rangle\rangle_{n} = \langle v_{n}^{2}\rangle$$ $$d_{n}\{2\}(p_{T}) = \langle\langle 2'\rangle\rangle_{n} = \langle v_{n}(p_{T}) \cdot v_{n}\rangle$$ $$v_{n}\{2\}(p_{T}) = \frac{d_{n}\{2\}(p_{T})}{\sqrt{c_{n}\{2\}}}$$ Short-range correlations (e.g. jets) introduce bias in correlation function -> Non-flow To suppress short-range correlations, introduce η gap, only construct pairs from opposite regions: #### How do we measure flow? Several techniques: Fourier decomposition, Q-cumulants... #### From 2-particle correlations: $$c_{n}\{2\} = \langle\langle 2\rangle\rangle_{n} = \langle v_{n}^{2}\rangle$$ $$d_{n}\{2\}(p_{T}) = \langle\langle 2'\rangle\rangle_{n} = \langle v_{n}(p_{T}) \cdot v_{n}\rangle$$ $$v_{n}\{2\}(p_{T}) = \frac{d_{n}\{2\}(p_{T})}{\sqrt{c_{n}\{2\}}}$$ ## Can also calculate from 4-particle correlation: $$c_n\{4\} = \langle \langle 4 \rangle \rangle_n - 2\langle \langle 2 \rangle \rangle_n^2$$ $$d_n\{4\} (p_T) = \langle \langle 4' \rangle \rangle_n - 2\langle \langle 2 \rangle \rangle \langle \langle 2' \rangle \rangle_n$$ $$v_n\{4\} (p_T) = \frac{d_n\{4\} (p_T)}{\sqrt[-3/4]{-c_n\{4\}}}$$ Short-range correlations (e.g. jets) introduce bias in correlation function -> Non-flow To suppress short-range correlations, introduce η gap, only construct pairs from opposite regions: ### The ALICE detector A Large Ion Collider Experiment: multi-purpose detector at the LHC with excellent tracking & particle identification capabilities in a wide p_T range (0.1 GeV/c to ~20 GeV/c for PID, up to 50 GeV/c for unidentified) - Inner Tracking System (ITS) - Tracking - Triggering - PID - Time-Projection Chamber - Tracking - PID - V0 detector - VOA (2.8 < η < 5.1) - **VOC** ($-3.7 < \eta < -1.7$) - Triggering - Multiplicity estimation Plethora of v_2 {2,4,6,8} measurements in ALICE, with different η gaps, Plethora of v_2 {2,4,6,8} measurements in ALICE, with different η gaps, and also v_3 {2,4} - $v_2\{m\}$ in central Pb—Pb collisions: - v_2 {2} larger than v_2 {4,6,8}: fluctuations and non-flow • Non-flow in $v_2\{2\}$ suppressed by η -gap; $v_2\{4,6,8\}$ not affected by η -gap - $v_2\{m\}$ in central Pb—Pb collisions: - v_2 {2} larger than v_2 {4,6,8}: fluctuations and non-flow - Non-flow in $v_2\{2\}$ suppressed by η -gap; $v_2\{4,6,8\}$ not affected by η -gap - v_2 sensitive to geometry, increases when going peripheral ## pt-differential v_n{m} in Pb-Pb collisions - $v_2\{m\}$ in central Pb—Pb collisions: - v_2 {2} larger than v_2 {4,6,8}: fluctuations and non-flow - Non-flow in $v_2\{2\}$ suppressed by η -gap; $v_2\{4,6,8\}$ not affected by η -gap - v_2 sensitive to geometry, increases when going peripheral #### $v_3\{m\}$ in Pb—Pb collisions: • At high p_T dominated by non-flow, suppressed with η -gap - v_2 {m} in central Pb—Pb collisions: - v_2 {2} larger than v_2 {4,6,8}: fluctuations and non-flow - Non-flow in $v_2\{2\}$ suppressed by η -gap; $v_2\{4,6,8\}$ not affected by η -gap - v_2 sensitive to geometry, increases when going peripheral #### $v_3\{m\}$ in Pb—Pb collisions: - At high p_T dominated by non-flow, suppressed with η -gap - Less sensitive to geometry (compared to v_2), more sensitive to colliding nucleon fluctuations ## pt-differential v_n{m} in Pb-Pb collisions - v_2 {m} in central Pb—Pb collisions: - v_2 {2} larger than v_2 {4,6,8}: fluctuations and non-flow - Non-flow in $v_2\{2\}$ suppressed by η -gap; $v_2\{4,6,8\}$ not affected by η -gap - v_2 sensitive to geometry, increases when going peripheral #### $v_3\{m\}$ in Pb—Pb collisions: - At high p_T dominated by non-flow, suppressed with η -gap - Less sensitive to geometry (compared to v_2), more sensitive to colliding nucleon fluctuations What about smaller systems, eg Xe—Xe? v_2 in Xe-Xe: similar trends to those seen in Pb-Pb collisions - $v_2{4,6} < v_2{2}$, fluctuations and non-flow - η -gap suppresses non-flow, larger gap required • In peripheral collisions, $v_2\{2\}$ is dominated by non-flow v_2 in Xe-Xe: similar trends to those seen in Pb-Pb collisions - v_2 {4,6} < v_2 {2}, fluctuations and non-flow - η -gap suppresses non-flow, larger gap required - In peripheral collisions, $v_2\{2\}$ is dominated by non-flow And similar for v_3 ... ### p_T-differential v₂ PDFs ### What can we learn from these measurements? - If $v_2\{m\} \propto \varepsilon_2$, then $\frac{v_2\{4\}}{v_2\{6,8\}} = const$, independent of p_T - If the probability density function of v_2 is given by the Bessel-Gaussian distribution, then $v_2\{4\} = v_2\{6,8\}$ ### p_T-differential v₂ PDFs ### What can we learn from these measurements? - If $v_2\{m\} \propto \varepsilon_2$, then $\frac{v_2\{4\}}{v_2\{6,8\}} = const$, independent of \textbf{p}_{T} - If the probability density function of v_2 is given by the Bessel-Gaussian distribution, then $v_2\{4\} = v_2\{6,8\}$ #### **But we find:** - v_2 distribution not described by the Bessel-Gaussian distribution - Non-trivial evolution with p_T, -> Sensitive to medium transport parameters? ### p_T-differential v₂ PDFs v_2 PDF: sensitive to geometry and evolution of the system. How does it look? - Can calculate different moments of the distribution from $v_2\{m\}$ [1]: - Skewness (γ₁) ~ -0.3 at low p_T (cf hydro [2]) - Kurtosis (γ_2) small, positive at low p_T , tails larger than Gaussian - Higher p_T (\gtrsim 3): γ_1 and γ_2 consistent with 0, v_2 PDF approaches normal distribution ^{•[1]} Phys. Rev. C 95, 014913 [2] JHEP 1807, 103 (2018) ### Summary - p_T-differential measurements of flow coefficients using 6- and 8-particle correlations done for the first time in ALICE - v₂{6} and v₂{8} show deviations from v₂{4}, indicating that the underlying PDF is not described by the Bessel-Gaussian distribution - $v_2\{6\}/v_2\{4\}$ and $v_2\{8\}/v_2\{4\}$ ratios show non-trivial evolution with p_T - -> Might point to needed refinement of the traditional linear relation between v_n and ε_n - Probability density function of v_2 is not constant in p_T (large left tail at low p_T , approaching normal distribution at ~3 GeV/c) ### Backup $v_2\{m\}$ in central Pb—Pb collisions: - v_2 {2} larger than v_2 {4,6,8}: fluctuations and non-flow - Non-flow in $v_2\{2\}$ suppressed by η -gap; $v_2\{4,6,8\}$ not affected by η -gap - v_2 sensitive to geometry when, increases when going peripheral