Measurements of p_T-differential v_2 and v_3 using multi-particle cumulants in Pb-Pb and Xe-Xe collisions

Vytautas Vislavicius for the ALICE Collaboration
Hydrodynamical flow in heavy-ion collisions

Heavy-ion collision geometry

- Partial overlap between colliding projectiles, spatial anisotropy of colliding nucleons give rise to pressure gradients...
- ... which result in anisotropies in (produced) particle azimuthal angular distributions
- -> Particles “flow”
Hydrodynamical flow in heavy-ion collisions

Heavy-ion collision geometry

- Partial overlap between colliding projectiles, spatial anisotropy of colliding nucleons give rise to pressure gradients...
- ...which result in anisotropies in (produced) particle azimuthal angular distributions
 -> Particles “flow”
 — Elliptic flow (v_2), triangular flow (v_3), etc...

Studying the flow of final state hadrons we can learn about medium properties and initial conditions in heavy-ion collisions
How do we measure flow?

Several techniques: Fourier decomposition, Q-cumulants...

From 2-particle correlations:

\[c_n(2) = \langle \langle 2 \rangle \rangle_n = \langle v_n^2 \rangle \]
\[d_n(2)(p_T) = \langle \langle 2' \rangle \rangle_n = \langle v_n(p_T) \cdot v_n \rangle \]
\[v_n(2)(p_T) = \frac{d_n(2)(p_T)}{\sqrt{c_n(2)}} \]
Hydrodynamical flow in heavy-ion collisions

How do we measure flow?

Several techniques: Fourier decomposition, Q-cumulants...

From 2-particle correlations:

\[c_n \{2\} = \langle \langle 2 \rangle \rangle_n = \langle v_n^2 \rangle \]

\[d_n \{2\} (p_T) = \langle \langle 2' \rangle \rangle_n = \langle v_n (p_T) \cdot v_n \rangle \]

\[v_n \{2\} (p_T) = \frac{d_n \{2\} (p_T)}{\sqrt{c_n \{2\}}} \]

Short-range correlations (e.g. jets) introduce bias in correlation function -> Non-flow
Hydrodynamical flow in heavy-ion collisions

How do we measure flow?

Several techniques: Fourier decomposition, Q-cumulants…

From 2-particle correlations:

\[c_n(2) = \langle \langle 2 \rangle \rangle_n = \langle v_n^2 \rangle \]

\[d_n(2)(p_T) = \langle \langle 2' \rangle \rangle_n = \langle v_n(p_T) \cdot v_n \rangle \]

\[v_n(2)(p_T) = \frac{d_n(2)(p_T)}{\sqrt{c_n(2)}} \]

Short-range correlations (e.g. jets) introduce bias in correlation function -> Non-flow

To suppress short-range correlations, introduce \(\eta \) gap, only construct pairs from opposite regions:
Hydrodynamical flow in heavy-ion collisions

How do we measure flow?

Several techniques: Fourier decomposition, Q-cumulants...

From 2-particle correlations:

\[c_n\{2\} = \langle \langle 2 \rangle \rangle_n = \langle v_n^2 \rangle \]

\[d_n\{2\}(p_T) = \langle \langle 2' \rangle \rangle_n = \langle v_n(p_T) \cdot v_n \rangle \]

\[v_n\{2\}(p_T) = \frac{d_n\{2\}(p_T)}{\sqrt{c_n\{2\}}} \]

Can also calculate from 4-particle correlation:

\[c_n\{4\} = \langle \langle 4 \rangle \rangle_n - 2\langle \langle 2 \rangle \rangle_n^2 \]

\[d_n\{4\}(p_T) = \langle \langle 4' \rangle \rangle_n - 2\langle \langle 2 \rangle \rangle \langle \langle 2' \rangle \rangle_n \]

\[v_n\{4\}(p_T) = \frac{d_n\{4\}(p_T)}{\sqrt[3]{-c_n\{4\}}} \]

Short-range correlations (e.g. jets) introduce bias in correlation function -> Non-flow

To suppress short-range correlations, introduce \(\eta \) gap, only construct pairs from opposite regions:
The ALICE detector

A Large Ion Collider Experiment: multi-purpose detector at the LHC with excellent tracking & particle identification capabilities in a wide p_T range (0.1 GeV/c to ~20 GeV/c for PID, up to 50 GeV/c for unidentified)

- Inner Tracking System (ITS)
 - Tracking
 - Triggering
 - PID
- Time-Projection Chamber
 - Tracking
 - PID
- V0 detector
 - V0A ($2.8 < \eta < 5.1$)
 - V0C ($-3.7 < \eta < -1.7$)
- Triggering
- Multiplicity estimation
\(\rho_T \)-differential \(v_n\{m\} \) in Pb-Pb collisions

Plethora of \(v_2\{2,4,6,8\} \) measurements in ALICE, with different \(\eta \) gaps,

![Graphs showing \(v_2 \) and \(v_4 \) at different \(\eta \) gaps for Pb-Pb collisions at 5.02 TeV, with ALICE Preliminary results for V0M 5-10\%, 10-20\%, 20-30\%, and 30-40\%.](image-url)
p_T-differential $v_n\{m\}$ in Pb-Pb collisions

Plethora of $v_2\{2,4,6,8\}$ measurements in ALICE, with different η gaps, and also $v_3\{2,4\}$
p_T-differential $v_n(m)$ in Pb-Pb collisions

$v_n(m)$ in central Pb—Pb collisions:
- $v_2(2)$ larger than $v_2(4,6,8)$: fluctuations and non-flow
- Non-flow in $v_2(2)$ suppressed by η-gap; $v_2(4,6,8)$ not affected by η-gap
p_T-differential $v_n\{m\}$ in Pb-Pb collisions

$v_2\{m\}$ in central Pb—Pb collisions:
- $v_2\{2\}$ larger than $v_2\{4, 6, 8\}$: fluctuations and non-flow
- v_2 sensitive to geometry, increases when going peripheral

- Non-flow in $v_2\{2\}$ suppressed by η-gap; $v_2\{4, 6, 8\}$ not affected by η-gap
p_T-differential $v_n\{m\}$ in Pb-Pb collisions

$v_2\{m\}$ in central Pb—Pb collisions:
- $v_2\{2\}$ larger than $v_2\{4,6,8\}$: fluctuations and non-flow
- v_2 sensitive to geometry, increases when going peripheral

$v_3\{m\}$ in Pb—Pb collisions:
- At high p_T dominated by non-flow, suppressed with η-gap

• Non-flow in $v_2\{2\}$ suppressed by η-gap; $v_2\{4,6,8\}$ not affected by η-gap

![Graph showing v_3/m vs p_T](image)
\(p_T \)-differential \(v_n\{m\} \) in Pb-Pb collisions

\(v_2\{m\} \) in central Pb—Pb collisions:
- \(v_2\{2\} \) larger than \(v_2\{4,6,8\} \):
 fluctuations and non-flow
- \(v_2 \) sensitive to geometry, increases when going peripheral

\(v_3\{m\} \) in Pb—Pb collisions:
- At high \(p_T \) dominated by non-flow, suppressed with \(\eta \)-gap
- Less sensitive to geometry (compared to \(v_2 \)), more sensitive to colliding nucleon fluctuations

- Non-flow in \(v_2\{2\} \) suppressed by \(\eta \)-gap; \(v_2\{4,6,8\} \) not affected by \(\eta \)-gap

![Graph showing \(v_3\{2\}, v_3\{2, |\eta|>0\}, v_3\{2, |\eta|>1\}, v_3\{4\} \) vs. \(p_T \) in Pb-Pb collisions.](attachment:image.png)
\(\rho_T \)-differential \(v_n\{m\} \) in Pb-Pb collisions

\(v_2\{m\} \) in central Pb—Pb collisions:
- \(v_2\{2\} \) larger than \(v_2\{4,6,8\} \): fluctuations and non-flow
- \(v_2 \) sensitive to geometry, increases when going peripheral

\(v_3\{m\} \) in Pb—Pb collisions:
- At high \(\rho_T \) dominated by non-flow, suppressed with \(\eta \)-gap
- Less sensitive to geometry (compared to \(v_2 \)), more sensitive to colliding nucleon fluctuations

Non-flow in \(v_2\{2\} \) suppressed by \(\eta \)-gap; \(v_2\{4,6,8\} \) not affected by \(\eta \)-gap

What about smaller systems, eg Xe—Xe?

arXiv:1903.01790 [nucl-ex]

![Graph showing data for \(v_2\{m\} \) and \(v_3\{m\} \) in Pb—Pb collisions](image)
\(p_T \)-differential \(v_n^m \) in Xe-Xe collisions

\(v_2 \) in Xe—Xe: similar trends to those seen in Pb—Pb collisions

- \(v_2^{\{4,6\}} < v_2^{\{2\}} \), fluctuations and non-flow
- \(\eta \)-gap suppresses non-flow, larger gap required

- In peripheral collisions, \(v_2^{\{2\}} \) is dominated by non-flow

\begin{align*}
\text{ALICE Preliminary} \\
\text{Xe-Xe, } \sqrt{s_{\text{NN}}} = 5.44 \text{ TeV} \\
\text{V0M 30-50\%}
\end{align*}

\begin{align*}
\text{ALICE Preliminary} \\
\text{Xe-Xe, } \sqrt{s_{\text{NN}}} = 5.44 \text{ TeV} \\
\text{V0M 50-70\%}
\end{align*}
ρ_T-differential v_n{m} in Xe-Xe collisions

v_2 in Xe—Xe: similar trends to those seen in Pb—Pb collisions

- $v_2\{4,6\} < v_2\{2\}$, fluctuations and non-flow
- η-gap suppresses non-flow, larger gap required

- In peripheral collisions, $v_2\{2\}$ is dominated by non-flow

And similar for v_3, ...

![Graphs showing $v_3(2)$ vs p_T for Xe-Xe collisions at different energy and centrality.]
p_T-differential v_2 PDFs

What can we learn from these measurements?

- If $v_2\{m\} \propto \varepsilon_2$, then
 \[
 \frac{v_2\{4\}}{v_2\{6,8\}} = \text{const, independent of } p_T
 \]

- If the probability density function of v_2 is given by the Bessel-Gaussian distribution, then
 \[
 v_2\{4\} = v_2\{6,8\}
 \]
What can we learn from these measurements?

- If $v_2\{m\} \propto \varepsilon_2$, then
 $$\frac{v_2\{4\}}{v_2\{6,8\}} = \text{const}, \text{ independent of } p_T$$
- If the probability density function of v_2 is given by the Bessel-Gaussian distribution, then $v_2\{4\} = v_2\{6,8\}$

But we find:
- v_2 distribution not described by the Bessel-Gaussian distribution
- Non-trivial evolution with p_T, -> Sensitive to medium transport parameters?
p_T-differential ν_2 PDFs

ν_2 PDF: sensitive to geometry and evolution of the system. How does it look?
— Can calculate different moments of the distribution from $\nu_2 \{m\}$[1]:
 - Skewness (γ_1) \sim -0.3 at low p_T (cf hydro [2])
 - Kurtosis (γ_2) small, positive at low p_T, tails larger than Gaussian
 - Higher p_T ($\gtrsim 3$): γ_1 and γ_2 consistent with 0, ν_2 PDF approaches normal distribution

Summary

• p_T-differential measurements of flow coefficients using 6- and 8-particle correlations done for the first time in ALICE

• $v_2\{6\}$ and $v_2\{8\}$ show deviations from $v_2\{4\}$, indicating that the underlying PDF is not described by the Bessel-Gaussian distribution

• $v_2\{6\}/v_2\{4\}$ and $v_2\{8\}/v_2\{4\}$ ratios show non-trivial evolution with p_T
 -> Might point to needed refinement of the traditional linear relation between v_n and ε_n

• Probability density function of v_2 is not constant in p_T (large left tail at low p_T, approaching normal distribution at ~3 GeV/c)
Backup
ρ_T-differential $v_n\{m\}$ in Pb-Pb collisions

$v_2\{m\}$ in central Pb—Pb collisions:
- $v_2\{2\}$ larger than $v_2\{4,6,8\}$: fluctuations and non-flow
- v_2 sensitive to geometry when, increases when going peripheral

- Non-flow in $v_2\{2\}$ suppressed by η-gap; $v_2\{4,6,8\}$ not affected by η-gap