Non-linear flow modes for identified hadrons

Naghmeh Mohammadi for the ALICE Collaboration

Constraining QGP properties

EPS-HEP 2019 - Naghmeh Mohammadi

$$V_n = V_n^{\rm L} + V_n^{\rm NL} \quad (n > 3)$$

Phys.Lett. B773 (2017) 68

13/7/2019

$$V_n = V_n^{\rm L} + V_n^{\rm NL} \quad (n > 3)$$

Linear response Non-linear response

$$V_4 = V_4^{\rm NL} + V_4^{\rm L} = \chi_{4,22} (V_2)^2 + V_4^{\rm L}$$

$$V_5 = V_5^{\rm NL} + V_5^{\rm L} = \chi_{5,32} V_3 V_2 + V_5^{\rm L}$$

 $V_6 = V_6^{\rm NL} + V_6^{\rm L} = \frac{\chi_{6,222}(V_2)^3}{\chi_{6,322}(V_2)^3} + \chi_{6,33}(V_3)^2 + \chi_{6,24}V_2V_4^{\rm L} + V_6^{\rm L}$

Phys. Lett. B773 (2017) 68 13/7/2019

EPS-HEP 2019 - Naghmeh Mohammadi

$$\begin{aligned} v_{4,22} &= \frac{\langle v_4 v_2^2 \ \cos(4\Psi_4 - 4\Psi_2) \rangle}{\sqrt{\langle v_2^4 \rangle}} \\ v_{5,32} &= \frac{\langle v_5 v_3 v_2 \ \cos(5\Psi_5 - 3\Psi_3 - 2\Psi_2) \rangle}{\sqrt{\langle v_3^2 v_2^2 \rangle}} \\ v_{6,33} &= \frac{\langle v_6 v_3^2 \ \cos(6\Psi_6 - 6\Psi_3) \rangle}{\sqrt{\langle v_3^4 \rangle}} \\ v_{6,222} &= \frac{\langle v_6 v_2^3 \cos(6\Psi_6 - 6\Psi_2) \rangle}{\sqrt{\langle v_2^6 \rangle}} \end{aligned}$$

Linear and non-linear response in higher flow harmonics

 \bullet *p*_T-integrated **non-linear flow modes**: v_{4,22}, v_{5,32}, v_{6,222}, v_{6,33}

• p_{T} -integrated linear flow modes: $v_{4^{L}}$ and $v_{5^{L}}$

• For charged particles:

$$v_4^{\rm L} = \sqrt{v_4^2 - v_{4,22}^2}$$
 $v_5^{\rm L} = \sqrt{v_5^2 - v_{5,32}^2}$

Linear and non-linear response in higher flow harmonics

• p_{T} -integrated non-linear flow modes: $v_{4,22}$, $v_{5,32}$, $v_{6,222}$, $v_{6,33}$

• p_{T} -integrated linear flow modes: v_4^L and v_5^L

For charged particles:

• p_{T} -differential Non-linear modes are more sensitive to: Initial state fluctuations

• Transport properties (η/s , ζ/s) ALICE, Phys.Lett. B773 (2017) 68

13/7/2019

EPS-HEP 2019 - Naghmeh Mohammadi

• For different particle species, probe in addition:

Effects of hadronisation mechanism

Effects of hadronic rescattering

ALICE, JHEP 1609 (2016) 164

- Minimum Bias Pb-Pb data at 5.02 TeV recorded in 2015
 - ✤ 45M analysed events
 - ◆ 0-5% 10-20% and 40-50% centrality intervals
- Tracks from TPC acceptance: $|\eta| < 0.8$
- * 2 non-overlapping sub-events: $|\Delta \eta| > 0.0$
- RFPs (Reference particles): charged particles

• $0.2 < p_{\rm T} < 5.0 \, ({\rm GeV}/c)$

POIs (Particles of Interest):

* π^{\pm} , K[±] and p+ \bar{p} :

Particle identification from TPC+TOF

POI	$p_{\rm T}$ range (GeV/c)	Purity
π±	$0.4 < p_{\rm T} < 6.0$	>90%
K±	$0.4 < p_{\rm T} < 4.0$	>75%
p+p	$0.4 < p_{\rm T} < 6.0$	>80%

Analysis details

- Minimum Bias Pb-Pb data at 5.02 TeV recorded in 2015
 - ✤ 45M analysed events
 - ◆ 0-5% 10-20% and 40-50% centrality intervals
- Tracks from TPC acceptance: $|\eta| < 0.8$
- * 2 non-overlapping sub-events: $|\Delta \eta| > 0.0$
- RFPs (Reference particles): charged particles • $0.2 < p_{\rm T} < 5.0 \, ({\rm GeV}/c)$
- POIs (Particles of Interest):

• K^{0}_{s} , $\Lambda + \overline{\Lambda}$ and ϕ :

- Reconstruction via decay products:
 - Particle Identification: purity > 80%
 - Constraining decay topology

Analysis details

* p_{T} -differential $v_{4,22}$, $v_{5,32}$, $v_{6,33}$ and $v_{6,222}$: ✤ a multi-particle correlation technique ✤ 2 non-overlapping sub-events

 $v_{n,mk}(p_{\mathrm{T}}) = \frac{d_{n,mk}(p_{\mathrm{T}})}{\sqrt{c_{mk,mk}}}$

for π^{\pm} , K[±] and p+ \bar{p}

Analysis method

ALICE, Phys. Lett. B773 (2017) 68

* p_{T} -differential $v_{4,22}$, $v_{5,32}$, $v_{6,33}$ and $v_{6,222}$: ✤ a multi-particle correlation technique 2 non-overlapping sub-events •

$$v_{n,mk}(p_{\mathrm{T}}) = rac{d_{n,mk}(p_{\mathrm{T}})}{\sqrt{c_{mk,mk}}}$$
 for π^{\pm} , K[±] and p+p̄

• For decaying particles: $v_{n,mk}$ is calculated with the m_{inv} method:

$$v_{n,mk}(p_{\mathrm{T}}, m_{\mathrm{inv}}) = rac{d_{n,mk}(p_{\mathrm{T}}, m_{\mathrm{inv}})}{\sqrt{c_{mk,mk}}} \qquad \text{for } \mathrm{K}^{0}_{\mathrm{s}}, \Lambda + \bar{\Lambda}$$

$$d_{n,mk}(m_{\rm inv}) = \frac{N^{\rm sig}}{N^{\rm tot}}(m_{\rm inv})d_{n,mk}^{\rm sig} + \frac{N^{\rm bkg}}{N^{\rm tot}}(m_{\rm inv})d_{n,mk}^{\rm bkg}(m_{\rm inv})d_{n,mk}^{\rm bkg}(m_{m})d_{n,mk}^{\rm bkg}(m_{m})d$$

• p_{T} -differential $v_{4,22}$, $v_{5,32}$, $v_{6,33}$ and $v_{6,222}$: ✤ a multi-particle correlation technique 2 non-overlapping sub-events

$$v_{n,mk}(p_{\mathrm{T}}) = rac{d_{n,mk}(p_{\mathrm{T}})}{\sqrt{c_{mk,mk}}}$$
 for π^{\pm} , K[±] and p+p̄

• For decaying particles: $v_{n,mk}$ is calculated with the m_{inv} method:

$$v_{n,mk}(p_{\mathrm{T}}, m_{\mathrm{inv}}) = rac{d_{n,mk}(p_{\mathrm{T}}, m_{\mathrm{inv}})}{\sqrt{c_{mk,mk}}} \quad \text{for } \mathrm{K}^{0}_{\mathrm{s}}, \Lambda + \bar{\Lambda}$$

$$d_{n,mk}(m_{\rm inv}) = \frac{N^{\rm sig}}{N^{\rm tot}}(m_{\rm inv})d_{n,mk}^{\rm sig} + \frac{N^{\rm bkg}}{N^{\rm tot}}(m_{\rm inv})d_{n,mk}^{\rm bkg}(m_{\rm inv})d_{n,mk}^{\rm bkg}(m_{m})d_{n,mk}^{\rm bkg}(m_{m})d$$

Non-flow effects suppressed largely by multi-particle correlations Residual tested with various gaps between the sub-events Included in the systematic uncertainties

13/7/2019

Measurement of $v_{4,22}(p_T)$ for identified particles

Clear centrality dependence

- Most-central collisions:
 - Small value for all particle species

Measurement of $v_{4,22}(p_T)$ for identified particles

- Clear centrality dependence
- Most-central collisions:
 - Small value for all particle species
- Non-central collisions:
 - * Mass ordering in the low p_T region ($p_T < 2.5$ GeV/c): Interplay of radial flow with non-linear modes
 - mechanism

* Particle type grouping in the intermediate p_T region ($p_T > 2.5$ GeV/c): Quark coalescence(?) as dominant particle production

EPS-HEP 2019 - Naghmeh Mohammadi

Measurement of $v_{5,32}(p_T)$ for identified particles

- Clear centrality dependence
- Most-central collisions:
 - Small value for all particle species
- Non-central collisions:
 - Mass ordering in the low p_T region ($p_T < 2.5$ GeV/c): Interplay of radial flow with non-linear modes

mechanism

* Particle type grouping in the intermediate p_T region ($p_T > 2.5$ GeV/c): Quark coalescence(?) as dominant particle production

Measurement of $v_{6,33}(p_T)$ for identified particles

The magnitude does not exhibit a strong centrality dependence

Indication of similar features (mass ordering and particle type grouping)

13/7/2019

Measurement of $v_{6,222}(p_T)$ for identified particles

Clear centrality dependence

- Most central collisions:
 - Compatible with zero
- Non-central collisions:
 - Same features (mass ordering and particle type grouping)

Hydrodynamic predictions: $v_n(p_T)$ of identified particles

- AMPT: Better agreement with v_n measurements •
- TRENTo: Agreement up to slightly lower transverse momenta depending on the centrality interval •

13/7/2019

EPS-HEP 2019 - Naghmeh Mohammadi

ALICE, JHEP09(2018)006

Hydrodynamic predictions: $v_{4,22}(p_T)$ and $v_{5,32}(p_T)$ of identified hadrons

*** Semi-central collisions**: similar performances Also seen in the comparison to v_n measurements TRENTo slightly better in $v_{4,22}$, AMPT better in $v_{5,32}$ * Mid-peripheral collisions: AMPT predicts the data better Also seen in the comparisons to v_n measurements ***** Larger separation between the two calculations compared to anisotropic flow

Hydrodynamic predictions: $v_{6,33}(p_T)$ and $v_{6,222}(p_T)$ of identified hadrons

*** Semi-central collisions**: similar

performances

Also seen in the comparison

to v_n measurements

TRENTo slightly better in v_{6,222}, AMPT better in v_{6,33}

*Mid-peripheral collisions:

AMPT predicts the data better Also seen in the comparisons

to v_n measurements

Larger separation between the two calculations compared to anisotropic flow

TRENTo needs to use our measurements for further tuning

ALI-PREL-324029

First results on non-linear flow modes of identified particles: *v*_{4,22}, *v*_{5,32}, *v*_{6,33}, *v*_{6,222} **\bullet** Clear centrality dependence for $v_{4,22}$, $v_{5,32}, v_{6,222}$ (Less dependence for $v_{6,33}$)

ALI-PREL-324071

Summary

EPS-HEP 2019 - Naghmeh Mohammadi

First results on non-linear flow modes of identified particles: *v*_{4,22}, *v*_{5,32}, *v*_{6,33}, *v*_{6,222} **\bullet** Clear centrality dependence for $v_{4,22}$, $v_{5,32}$, $v_{6,222}$ (Less dependence for $v_{6,33}$)

• For all flow harmonics at non-central collisions **Mass ordering** in low *p*_T ***** Particle type grouping in the intermediate *p*_T

Summary

• First results on non-linear flow modes of identified particles: *v*_{4,22}, *v*_{5,32}, *v*_{6,33}, *v*_{6,222} Clear centrality dependence for *v*_{4,22}, $v_{5,32}$, $v_{6,222}$ (Less dependence for $v_{6,33}$)

• For all flow harmonics at non-central collisions **Mass ordering** in low *p*_T

***** Particle type grouping in the intermediate $p_{\rm T}$

◆ iEBE-VISHNU: **AMPT** and **TRENTo** initial conditions with different sets of parameters

- AMPT (η /s=0.08 and ζ /s=0) reproduces v_n and v_{n,mk} measurements slightly better than TRENTO ($\eta/s(T)$) and $\zeta/s(T)$)
- * Models require a bit more work to describe the details that data reveal

Summary

EPS-HEP 2019 - Naghmeh Mohammadi

ALI-PREL-158037

Thank you

Mathematical background

Phys.Lett. B773 (2017) 68 $V_n = V_n^{NL} + V_n^L$ (n > 3) Assuming V_n^{NL} and V_n^L are uncorrelated

$$V_4 = V_4^{NL} + V_4^L = \chi_{4,22}(V_2)^2 + V_4^L$$

$$V_5 = V_5^{NL} + V_5^L = \chi_{5,23} V_2 V_3 + V_5^L$$

$$V_6 = V_6^{NL} + V_6^L = \frac{\chi_{6,222}(V_2)^3}{\chi_{6,33}(V_3)^2} + \chi_{6,33}(V_3)^2 + \chi_{6,24}(V_3)^2 +$$

$$\varepsilon_{4}' e^{i4\Phi_{4}'} \equiv \varepsilon_{4} e^{i4\Phi_{4}} + \frac{3\langle r^{2}\rangle^{2}}{\langle r^{4}\rangle} \varepsilon_{2}^{2} e^{i4\Phi_{2}}$$
Phys.Lett. B773 (2017) 68

 $_{24}V_2V_4^L + V_6^L$

EPS-HEP 2019 - Naghmeh Mohammadi

Using 2 sub-event method with $|\Delta \eta| > 0.0$:

$$\begin{aligned} v_{4,22}^{A}(p_{T}) &= \frac{\langle \langle \cos(4\varphi_{1}^{A}(p_{T}) - 2\varphi_{2}^{B} - 2\varphi_{3}^{B}) \rangle \rangle}{\sqrt{\langle \langle \cos(2\varphi_{1}^{A} + 2\varphi_{2}^{A} - 2\varphi_{3}^{B} - 2\varphi_{4}^{B}) \rangle \rangle}} \\ v_{5,32}^{A}(p_{T}) &= \frac{\langle \langle \cos(5\phi_{1}^{A}(p_{T}) - 3\varphi_{3}^{B} - 2\varphi_{2}^{B}) \rangle \rangle}{\langle \langle \cos(3\varphi_{1}^{A} + 2\varphi_{2}^{A} - 3\varphi_{3}^{B} - 2\varphi_{4}^{B}) \rangle \rangle} \\ v_{6,33}^{A}(p_{T}) &= \frac{\langle \langle \cos(6\varphi_{1}^{A}(p_{T}) - 3\varphi_{2}^{B} - 3\varphi_{3}^{B}) \rangle \rangle}{\langle \langle \cos(3\varphi_{1}^{A} + 3\varphi_{2}^{A} - 3\varphi_{3}^{B} - 3\varphi_{4}^{B}) \rangle \rangle} \\ v_{6,222}^{A}(p_{T}) &= \frac{\langle \langle \cos(6\varphi_{1}^{A}(p_{T}) - 2\varphi_{2}^{B} - 2\varphi_{3}^{B} - 2\varphi_{4}^{B}) \rangle \rangle}{\sqrt{\langle \langle \cos(2\varphi_{1}^{A} + 2\varphi_{2}^{A} + 2\varphi_{3}^{A} - 2\varphi_{4}^{B} - 2\varphi_{4}$$

Non-flow effects suppressed largely by multi-particle correlations in the numerator and denominator Residual non-flow tested with various gaps between the sub-events Included in the systematic uncertainties

EPS-HEP 2019 - Naghmeh Mohammadi

Analysis method

ALICE, Phys. Lett. B773 (2017) 68

If yes then we should have

Phys.Lett. B773 (2017) 68

Are V_n^{NL} and V_n^L uncorrelated?

Time Projection Chamber (TPC)

dE/dx: the specific energy loss Resolution: $\sigma_{dE/dx} \approx 5\%$

• $p < 0.5 \text{ GeV/c TPC (dE/dx signal) (TPCn\sigma < 3)}$ p>0.5 GeV TPC+TOF combined signals (pT dependent)

Combination of TPC and TOF used for PID

 π [±]: Purity > 90% up to p_T<6 GeV/c K±: Purity >75% up to $p_T < 4 \text{ GeV/c}$ p+p: Purity >80% up to p_T<6 GeV/c

EPS-HEP 2019 - Naghmeh Mohammådi^{-PUB-82296}

Particle Identification

Time of Flight (TOF)

 β =Track length/arrival time Resolution: $\sigma_{TOF} \approx 86$ ps for Pb-Pb collisions

 $n\sigma_{TPC}^{\pi}$

nσ^K_{TPC}

 $n\sigma_{TP}^{P}$

***** Reconstruction of K^{0}_{s} , Λ and ϕ :

- Via decay products on statistical basis
 - Particle Identification for the decay products: purity > 80%
 - Constraining decay topology

$$K_s^0 \to \pi^+ + \pi^-$$

$$\phi \to K^+ + K^-$$

$$\Lambda(\bar{\Lambda}) \to p(\bar{p}) + \pi^-(\pi^+)$$

Hydrodynamic predictions:

iEBE-VISHNU hybrid model (Eur.Phys.J. C77 (2017) no.9, 645, Zhao, Wenbin et al.):

- ✤ 2+1 dimensional viscous hydrodynamics (VISH2+1) coupled to hadron cascade model (UrQMD)
- Two initial conditions: AMPT, TRENTO
- ✤ Parameters for TRENTo Phys. Rev. C 94, 024907 (2016), <u>JE Bernhard</u> et al.
 - Reproduce multiplicity distributions in Pb+Pb, p+Pb, and Au+Au collisions at various collision energies
 - * Temperature dependent specific shear viscosity $\eta/s(T)$ and specific bulk viscosity $\zeta/s(T)$
 - Entropy deposition: p= 0
 - $T_{switch} = 148 \text{ MeV}, \tau_0 = 0.6 \text{ fm/c}$
- Parameters for AMPT:
 - $\eta/s(=0.08)$ and $\zeta/s(=0)$
 - $T_{switch} = 148 \text{ MeV}, \tau_0 = 0.6 \text{ fm/c}$

Hydrodynamic predictions: vn of pions

EPS-HEP 2019 - Naghmeh Mohammadi

Hydrodynamic predictions: vn of kaons

EPS-HEP 2019 - Naghmeh Mohammadi

Hydrodynamic predictions: vn of protons

EPS-HEP 2019 - Naghmeh Mohammadi

