Baryon production from small to large collision systems at ALICE Omar Vázquez, on behalf of the ALICE Collaboration

LUND UNIVERSITY ALICE

- Introduction
- □ ALICE at the LHC
- Particle production across system size
- Baryon-to-meson ratios
- Particle chemistry and model predictions
- Summary

Introduction

High-multiplicity pp & p-Pb collisions

- □ Low- p_T particle production: Soft processes, MPI → QCD inspired phenomenological models
- High- p_T particle production is well described by pQCD+fragmentation
- No jet quenching effects observed

pp collisions Omar Vázquez

High-multiplicity pp & p-Pb collisions

- \Box Low- p_{T} particle production: Soft processes, MPI \longrightarrow QCD inspired phenomenological models
- \square High- p_{T} particle production is well described by pQCD+fragmentation
- No jet quenching effects observed

pp collisions **Omar Vázquez**

High-multiplicity pp & p-Pb collisions

- \Box Low- p_{T} particles from bulk production
- Phenomenological models
- \square High- p_{T} particle production is well described by
 - pQCD+fragmentation
- Jet quenching

Is the chemistry in hadronic collisions driven by the system size/energy/ charged particle multiplicity...?

> High-multiplicity pp & p-Pb collisions

- \Box Low- p_{T} particle production: Soft processes, MPI \rightarrow QCD inspired phenomenological models
- \Box High- p_T particle production is well described by pQCD+fragmentation
- No jet quenching effects observed

pp collisions **Omar Vázquez**

- \Box Low- p_{T} particles from bulk production
- Phenomenological models
- \square High- $p_{\rm T}$ particle production is well described by
 - pQCD+fragmentation
- Jet quenching

ALICE at the LHC

ALICE at the LHC

- a. ITS SPD (Pixel) b. ITS SDD (Drift) c. ITS SSD (Strip)
- d. V0 and T0 e. FMD

(17)

□ The dedicated detector at the LHC for tracking and low-momentum PID in high-multiplicity environments

U V0

- **D** V0A(2.8 < η < 5.1)
- **u** V0C ($-3.7 < \eta < -1.7$)
- Triggering, background suppression and event classification
- **D** ITS
 - $\Box |\eta| < 0.9$
 - Tracking, triggering and PID
- **D** TPC
 - $\Box |\eta| < 0.9$
 - **□** Tracking and PID
- **D** TOF
 - **□** |η| < 0.9
 - **D PID**

Particle production across system size

p_{T} -spectra in small collision systems

Omar Vázquez

Baryon-to-meson ratio (light-flavour)

- □ In heavy-ion collisions the creation of a QGP takes place, which evolves with progressively stronger radial flow with increasing centrality
- \Box This acts differentially with mass as a function of P_{T}

- □ In heavy-ion collisions the creation of a QGP takes place, which evolves with progressively stronger radial flow with increasing centrality
- \square This acts differentially with mass as a function of $P_{\rm T}$
- □ Unexpected flow-like effects in small systems with increasing multiplicity

- □ In heavy-ion collisions the creation of a QGP takes place, which evolves with progressively stronger radial flow with increasing centrality
- \square This acts differentially with mass as a function of $P_{\rm T}$
- □ Unexpected flow-like effects in small systems with increasing multiplicity
- Similar behaviour is observed in the Λ/K_s^0 ratio

ALI-DER-314630

Omar Vázquez

EPS-HEP

16

- parameters for these model derived from e^+e^- collision data
- The colour reconnection mechanism in PYTHIA enhances flow-like effects, bringing the prediction closer to the data

Omar Vázquez

The $p_{\rm T}$ -differential $\Lambda_{\rm c}^+/{\rm D}^0$ ratio measured in pp collisions showed that it is significantly larger than the expected from the fragmentation

- The colour reconnection mechanism in PYTHIA enhances flow-like effects, bringing the prediction closer to the data
- Similar qualitative behaviour of the Λ_c^+/D^0 ratio to the one of the p/ π and Λ/K_s^0 ratios from pp to p-Pb collisions
- increase significantly

Omar Vázquez

□ Although the height of the maximum increases from pp to p-Pb collisions in the light-flavour sector, the one from heavy-flavour does not

- Charm-baryons in HI collisions allow charm-quark hadronization mechanisms to be studied inside the QGP \square At intermediate $p_{\rm T}$ the $\Lambda_{\rm c}^+/{\rm D}^0$ ratio is higher in central collisions than in peripheral ones

Omar Vázquez

EPS-HEP

19

- Charm-baryons in HI collisions allow charm-quark hadronization mechanisms to be studied inside the QGP
- \Box At intermediate $p_{\rm T}$ the $\Lambda_{\rm c}^+/{\rm D}^0$ ratio is higher in central collisions than in peripheral ones
- \square For $p_T \gtrsim 4 \text{ GeV}/c$, models in which coalescence and fragmentation are present can qualitatively describe the data
- Good agreement with statistical hadronization model

Omar Vázquez

ALI-PREL-321682

Enhanced production of (multi-)strange hadrons as a function of $\langle dN_{ch}/d\eta \rangle$

Enhanced production of (multi-)strange hadrons as a function of $\langle dN_{ch}/d\eta \rangle$ The rate increases with strange-quark content

Particle chemistry

- Enhanced production of (multi-)strange hadrons as a function of $\langle dN_{ch}/d\eta \rangle$ The rate increases with strange-quark content
- DIPSY describes the data best
- □ In this model the interaction between strings allows the formation of 'colour ropes', which are expected to produce more strange particles **JHEP 1503 (2015) 148**

Particle chemistry

- Enhanced production of (multi-)strange hadrons as a function of $\langle dN_{ch}/d\eta \rangle$ The rate increases with strange-quark content
- DIPSY describes the data best
- □ In this model the interaction between strings allows the formation of 'colour ropes', which are expected to produce more strange particles **JHEP 1503 (2015) 148**
- In Pb-Pb collisions no significant change beyond $\langle dN_{ch}/d\eta \rangle_{|\eta|<0.5} \approx 200$ canonical plateau)

Particle chemistry

- Enhanced production of (multi-)strange hadrons as a function of $\langle dN_{ch}/d\eta \rangle$ The rate increases with strange-quark content
- DIPSY describes the data best
- □ In this model the interaction between strings allows the formation of 'colour ropes', which are expected to produce more strange particles **JHEP 1503 (2015) 148**
- In Pb-Pb collisions no significant change beyond $\langle dN_{ch}/d\eta \rangle_{|\eta|<0.5} \approx 200$ canonical plateau)
- □ Hadrochemistry is predominately driven by the charged particle multiplicity density and not by the colliding system or collision energy

Increasing multiplicity Omar Vázquez

- DIPSY and EPOS-LHC mimic the increased strangeness with increasing multiplicity but fail to predict a constant p/π ratio
- PYTHIA8 and HERWIG7 fail to describe the multiplicity dependence of relative strangeness production
- □ All the MC generators fail to describe the multiplicity dependence of the K^{*0}/π ratio, which is observed to decrease slightly

- \square The ALICE experiment has made precise measurements of PID down to $p_{\rm T} \approx 100 \, {\rm MeV}/c$ in pp, p-Pb and Pb-Pb collisions over a broad range of collision energies allowing the exploration of the non-perturbative QCD regime
- □ The light-flavour baryon-to-meson ratio in small systems showed qualitative similarities to the ones in HI collisions. Moreover, these effects were also observed in the Λ_c^+/D^0 ratio
- Precise measurements of the production of identified charged particles showed that the charged particle multiplicity is a key variable that controls the relative particle abundances (hadrochemistry)

Baryon-to-meson ratio (MC)

Omar Vázquez

PYTHIA (String-model-based)

- Strings: colour-flux tubes between q - q end-points
- Pythia with CR enhances flow-like patterns

Phys. Rev. Lett 111, 042001

Successful in describing the qualitative features

EPOS LHC (Core-corona approach)

- Core: high-density of strings (QGP) droplet)
- Hadronization happens statistically
- Predicts the baryon-to-meson ratio at intermediate $p_{\rm T}$ but overestimates the multiplicity dependence Phys. Rev. Lett. 98, 152301

