Multiplicity and centre-of-mass energy dependence of light-flavor hadron production in pp, p-Pb, and Pb-Pb collisions with ALICE

Ivan Ravasenga, on behalf of the ALICE Collaboration
Bogolyubov Institute for Theoretical Physics and CERN
Introduction and motivations

• In high-energy nuclear collisions the p_T distributions of identified hadrons carry information about the system evolution

Why study identified particle p_T-spectra in pp, p-A and A-A collisions at different energies?

✓ Comparison between collision systems:
 ↔ Radial flow (small systems?)
 ↔ In-medium energy loss

✓ Comparison between collision energies:
 ↔ Energy scaling?

✓ Comparison to hydro models
 ↔ Models describe the measured scenario?
 ↔ Kinetic freeze-out temperature?
 ↔ Transverse velocity distribution?
Overview

1. ALICE experimental apparatus
2. Transverse-momentum spectra
3. Integrated yields and $\langle p_T \rangle$
4. Comparison to models
ALICE experimental apparatus

> Focus on Particle Identification (PID)
ALICE experimental apparatus

> Focus on Particle Identification (PID)

Inner Tracking System (ITS)

Primary and secondary vertex determination, tracking, PID through dE/dx ($\sigma_{dE/dx} \sim 11\%$)
ALICE experimental apparatus

> Focus on Particle Identification (PID)

V0

- Trigger + centrality determination.
ALICE experimental apparatus

> Focus on Particle Identification (PID)

Time Projection Chamber (TPC)

- Tracking, PID through \(dE/dx \) (\(\sigma_{dE/dx} \sim 5\% \))
ALICE experimental apparatus

> Focus on Particle Identification (PID)

Time Projection Chamber (TPC)
- Tracking, PID through dE/dx ($\sigma_{dE/dx} \sim 5\%$)

Time Of Flight (TOF)
- PID through time-of-flight measurement ($\rightarrow \beta$): $\sigma_{TOF} \sim 60-80$ ps
ALICE experimental apparatus

Focus on Particle Identification (PID)

Time Projection Chamber (TPC)
- Tracking, PID through dE/dx ($\sigma_{dE/dx} \sim 5\%$)

Time Of Flight (TOF)
- PID through time-of-flight measurement ($\rightarrow \beta$): $\sigma_{TOF} \sim 60\text{–}80 \text{ ps}$

High Momentum Particle IDentification (HMPID)
- PID through Cherenkov angle: $\sigma \sim 3 \text{ mrad}$
Event centrality & multiplicity in ALICE

pp, p-Pb, Pb-Pb
- Centrality/multiplicity defined as the **percentile** of the hadronic cross section corresponding to a particle multiplicity above a given threshold.
- Event multiplicity classes defined from the amplitude of the signal in the V0 (VZERO) detectors.

Pb-Pb
- The centrality of the collision is directly related to the **impact parameter** (b).

\[\overrightarrow{b} = \text{impact parameter} \]
• Spectra in Pb-Pb: **spectra become harder** as the multiplicity increases (flattening visible at low p_T)
 - The change is most pronounced for heavier particles → **Radial flow**
New: spectra in p-Pb at 8.16 TeV

- Spectra become harder as the multiplicity increases (flattening visible at low p_T)
- The change is most pronounced for heavier particles → Radial flow
- Spectra fit with a Lévy-Tsallis function
[pp] Particle spectra

- Spectra in pp:
 - Spectra become harder as the multiplicity increases
 - Hints of radial flow in a limited p_T range in high multiplicity pp collisions
• Evidence of an increasing trend of the K/π ratio → **Strangeness enhancement?**
• Hints of a decreasing trend of the p/π ratio at high multiplicity → **Baryon-antibaryon annihilation?**
• Saturation at high multiplicities for K/π
• No significant evolution with the collision energy

The chemical composition is **independent of collision system at same \(\langle dN_{\text{ch}}/d\eta \rangle \)**
p_T-integrated yield ratios vs multiplicity

- **Steep increase** with multiplicity in pp and p-Pb
- **Saturation** at higher multiplicities
- **No significant evolution** with the collision energy and collision system

Graphical Representation

![Graph showing yield ratios vs multiplicity](image)

- Plot of yield ratios to $p^+ + p^-$ vs multiplicity for various particles (e.g., p, Λ, 2ϕ, Ξ^-, Ω^+) with different collision systems (e.g., pp, p-Pb, Pb-Pb).

Data Points

- ALICE Preliminary
 - pp, $\sqrt{s} = 13$ TeV
 - pp, $\sqrt{s} = 7$ TeV
 - Pb-Pb, $\sqrt{s_{NN}} = 5.02$ TeV
 - Pb-Pb, $\sqrt{s_{NN}} = 8.16$ TeV

Mathematical Formulas

- $\phi(S=0)/\pi$ increase in small systems is inconsistent with simple canonical suppression (ϕ behaves like a particle with $S=1$ or $S=2$).

- Slope of the increase depends on strangeness content.
ρ_T-integrated yield ratios vs multiplicity

- Steep increase with multiplicity in pp and p-Pb
- Saturation at higher multiplicities
- No significant evolution with the collision energy and collision system

ϕ(S=0)/π increase in small systems is inconsistent with simple canonical suppression (ϕ behaves like a particle with S between 1 and 2)

- Slope of the increase depends on strangeness content

Hierarchy determined by the hadron strangeness content.
Mean transverse momenta ($\langle p_T \rangle$)

$\Omega(1672)$
$\Xi(1322)$
$\phi(1020)$
$\Lambda(1116)$
$p(938)$
$K(494)$
$\pi(140)$
Similar hierarchy is observed in pp, p-Pb and peripheral A-A

- In Central A-A collisions particles with similar masses have similar $\langle p_T \rangle$ (as expected from hydrodynamics)
Mean transverse momenta ($\langle p_T \rangle$)

- Similar hierarchy is observed in pp, p-Pb and peripheral A-A
 - In Central A-A collisions particles with similar masses have similar $\langle p_T \rangle$ (as expected from hydrodynamics)
 - ϕ above Λ and p, and close to Ξ: mass ordering violated in pp, p-Pb and peripheral Pb-Pb
Mean transverse momenta ($\langle p_T \rangle$)

- **Similar hierarchy** is observed in pp, p-Pb and peripheral A-A
 - In Central A-A collisions particles with similar masses have similar $\langle p_T \rangle$ (as expected from hydrodynamics)
 - ϕ above Λ and p, and close to Ξ: mass ordering violated in pp, p-Pb and peripheral Pb-Pb

- The p-Pb data exhibit mass-hierarchy features of both pp and Pb-Pb
- The moderate increase is usually attributed to increasing **collective radial flow**

Approximate masses
- $\Omega(1672)$
- $\Xi(1322)$
- $\phi(1020)$
- $\Lambda(1116)$
- $p(938)$
- $K(494)$
- $\pi(140)$

Graphs

- ALICE, pp
- ALICE, p-Pb
- ALICE, A-A

Equations

- $\pi(140)$
- $p(938)$
- $\Omega(1672)$
- $K(494)$
- $\Lambda(1116)$
- $\Xi(1322)$
- $\phi(1020)$

References

- PRC 99, 024906 (2019)
- EPJC 76, 245 (2018)
- PRL 758, 389-401 (2016)
- Xe-Xe, $\sqrt{s_{NN}} = 5.44$ TeV (Preliminary)
- Pb-Pb, $\sqrt{s_{NN}} = 5.02$ TeV (Preliminary)
- Pb-Pb, $\sqrt{s_{NN}} = 2.76$ TeV
- PRC 91, 024909 (2015)
Blast-wave analysis

Boltzmann-Gibbs blastwave model: a three-parameter simplified hydrodynamical model*

\[
E \frac{d^3N}{dp^3} \propto \int_0^R m_T I_0 \left(\frac{p_T \sinh(\rho)}{T_{\text{kin}}} \right) K_1 \left(\frac{m_T \cosh(\rho)}{\beta_T} \right) r \, dr
\]

\[m_T = \sqrt{m^2 + p_T^2}\]

\[\rho = \tanh^{-1}(\beta_T)\]

\[\beta_T(r) = \beta_s \left(\frac{r}{R} \right)^n\]

The resulting spectrum is a superposition of individual thermal sources, each boosted with the boost angle \(\rho\)

- Simultaneous Boltzmann-Gibbs fit to \(\pi, K\) and \(p\) using Pb-Pb 2.76 TeV fit ranges

\(\Rightarrow\) Good description of data in the fit range

\(n\): exp. of velocity profile \(\leftrightarrow\) profile

\(T_{\text{kin}}\): kinetic freeze-out temperature

\(\beta_T(r)\): transverse velocity distribution

\(\beta_s\): surface velocity

\(\rho\): boost angle
Blast-wave analysis (predictions)

Boltzmann-Gibbs blastwave model: a three-parameter simplified hydrodynamical model*

\[E \frac{d^3N}{dp^3} \propto \int_0^R m_T I_0 \left(\frac{p_T \sinh(\rho)}{T_{\text{kin}}} \right) K_1 \left(\frac{m_T \cosh(\rho)}{\beta_T} \right) r \, dr \]

\[m_T = \sqrt{m^2 + p_T^2} \quad \rho = \tanh^{-1}(\beta_T) \quad \beta_T(r) = \beta_s \left(\frac{r}{R} \right)^n \]

The resulting spectrum is a superposition of individual thermal sources, each boosted with the boost angle \(\rho \).

- Simultaneous Boltzmann-Gibbs fit to \(\pi, K \) and \(p \) used to predict \(\Lambda, \Xi, \Omega, \phi \)

\[\rightarrow \text{Good description of data for } p_T \lesssim 2-3 \text{ GeV/c depending on the mass} \]

\[n: \text{exp. of velocity profile } \leftrightarrow \text{profile} \]

\[T_{\text{kin}}: \text{kinetic freeze-out temperature} \]

\[\beta_T(r): \text{transverse velocity distribution} \]

\[\beta_s: \text{surface velocity} \]

\[\rho: \text{boost angle} \]
Blast-wave fit results

Large systems
- Largest $\langle \beta_T \rangle$ and lowest T_{kin} for central Pb-Pb collisions
- Comparable T_{kin} and $\langle \beta_T \rangle$ in Pb-Pb collisions at a similar $\langle dN_{\text{ch}}/d\eta \rangle$
Blast-wave fit results

Large systems
- Largest $\langle \beta_T \rangle$ and lowest T_{kin} for central Pb-Pb collisions
- Comparable T_{kin} and $\langle \beta_T \rangle$ in Pb-Pb collisions at a similar $\langle dN_{\text{ch}}/d\eta \rangle$

Small systems
- p-Pb & pp vs A-A
 - p-Pb and Pb-Pb show a similar increase of $\langle \beta_T \rangle$ consistent with the presence of radial flow in p-Pb collisions.
 - At similar $\langle dN_{\text{ch}}/d\eta \rangle$,
 - comparable T_{kin} for p-Pb and Pb-Pb, whereas $\langle \beta_T \rangle$ is significantly higher in p-Pb
 - pp and p-Pb show a similar trend and values are comparable
 - Higher T_{kin} in p-Pb 8.16 TeV wrt 5.02 TeV

p-Pb \rightarrow Stronger radial gradients

- Viscous hydrodynamics (QGP expansion) + Hadron cascade model (UrQMD) to simulate the evolution of the hadron resonance gas

\textbf{Trento initial conditions}: effective model where entropy is deposited proportional to the generalized mean of nuclear overlap density

\textbf{AMPT initial conditions}: initial state includes fluctuations at the nucleonic and subnucleonic levels and considers pre-equilibrium dynamics of partonic matter.

\textbf{Good agreement at low-intermediate }p_T\textbf{.}
A Large Ion Collider Experiment

- Non uniform fireball divided into the **core** (high density) and **corona** (lower density).

→ **Describes particle ratios better** in central Pb-Pb collisions

McGill (Phys. Rev. C 95, 064913 (2017))

- IP-Glasma initial condition matched to hydrodynamic variables and evolved using viscous hydrodynamic model (MUSIC).

→ **Good agreement at low-intermediate** p_T.
Summary

• Charged-hadron production results in several collision systems have been shown in this talk

• Messages to take home
 – **Radial flow effects** are measurable on the hadron distributions (*hardening*)
 – Hints of radial **flow in small systems** (high multiplicity pp)
 – **Hadron chemistry driven by multiplicity** and not by collision energy
 – **Yields and \(\langle p_T \rangle \) show a hierarchy** based on particle strangeness content
 – **Strong radial gradients in p-Pb** collisions (higher \(T_{kin} \) at 8.16 TeV)
 – Importance of **hydrodynamical models** which go beyond an incoherent superposition of parton-parton scatterings in the description of the measured data
Backup slides
Strange/non-strange ratio compared to models

- DIPSY, is a model where interaction between partonic strings is allowed to form “color ropes” which are expected to produce more strange particles and baryons.
Blast-wave analysis

The resulting spectrum is a superposition of individual thermal sources, each boosted with the boost angle ρ.

- Simultaneous Boltzmann-Gibbs fit to π, K and ρ using Pb-Pb 2.76 TeV fit ranges

→ Good description of data in the fit range

Boltzmann-Gibbs blastwave model: a three-parameter simplified hydrodynamical model*

\[
E \frac{d^3N}{dp^3} \propto \int_0^R \frac{m_T l_0 \left(\frac{p_T \sinh(\rho)}{T_{kin}} \right) K_1 \left(\frac{m_T \cosh(\rho)}{\beta_T} \right)}{r^{d-2}} \, dr
\]

\[
m_T = \sqrt{m^2 + p_T^2} \quad \rho = \tanh^{-1}(\beta_T) \quad \beta_T(r) = \beta_s \left(\frac{r}{R} \right)^n
\]

n: exp. of velocity profile \leftrightarrow profile
T_{kin}: kinetic freeze-out temperature
$\beta_T(r)$: transverse velocity distribution
β_s: surface velocity
ρ: boost angle

Blast-wave parameters vs multiplicity
Proton-to-pion ratios

Pb-Pb 5.02 TeV vs Xe-Xe 5.44 TeV
- Typical flow bump at around $p_T = 3 \text{ GeV/c}$, **more evident in central collisions**
- **Compatible** structure in the two colliding systems

pp 13 TeV
- Similar flow-like feature, the peak is more suppressed compared to A-A
- **Multiplicity dependence** is observed as in A-A
Particle ratios

- Pb-Pb at 2.76 vs 5.02 TeV
 - Indication of a slightly higher radial flow in central collisions compared to lower energies.
- pp, p-Pb and Pb-Pb
 - p/π: similar flow-like features for pp, p-Pb and Pb-Pb systems
• The ϕ meson behaves like a particle with strangeness between 1 and 2
Nuclear modification factor

\[R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{d^2N_{AA}/dydp_T}{d^2N_{pp}/dydp_T} \]

- (enhancement) \(> 1 \)
- (no medium effects) \(= 1 \)
- (suppression) \(< 1 \)

Test if AA or pA can be described by incoherent superposition of \(N_{coll} \) binary collisions

- \(\pi, K, p \) equally suppressed for all centralities at high \(p_T > 8 \text{ GeV/c} \)

- \(R_{pPb} \) compatible with 1 at high \(p_T \) for all particle species

- Mass ordering at intermediate \(p_T \) (Cronin region)
 - Strong enhancement for \(p, \Xi \) and \(\Omega \)
 - Similar enhancement observed in Pb-Pb and at RHIC.
Comparison with models

- **Krakow¹**: event-by-event (3+1)-D perfect fluid hydrodynamic
 - Reproduces particle spectra reasonably well
- **DPMJET²**: QCD-inspired model based on Glauber-Gribov formalism
 - Fails to reproduce particle spectra
- **EPOS-LHC**: pi, K and p reasonably well reproduced especially at low p_T

pp collisions

- Pythia 8³ generator overestimates p/π and underestimates K/π

¹ Bozek, PRC 85, 014911 (2012)
² Roesler et al., arXiv:hep-ph/0012252
³ arXiv:1404.5630v1
Comparison with models

\[\pi^+ + \pi^- (\times 10^4) \]

\[K^+ + K^- (\times 10^2) \]

\[p + \bar{p} (\times 10^6) \]

\[
\frac{1}{N_{\text{ev}}} \frac{dN}{d\Sigma (dE/dx)} \text{ (GeV/c)} \]

\(\text{ALICE Preliminary} \)

\(\text{Pb-Pb} \)

\(\text{70-80}\% \)

\(\text{iEBE-VISHNU with TRENTo and AMPT initial conditions} \)

\[\text{Good agreement at low } p_T \]

\[\text{EPOS-LHC (Phys. Rev. C 92, 034906 (2015))} \]

- Non uniform fireball divided in the core (high density) and corona (lower density).
 - Describes better \(\pi, K, K/\pi \) in peripheral Pb-Pb collisions

\[\text{Data / Model} \]

\(\text{Data} / \text{Model} \)

\((K^+ + K^-) / (\pi^+ + \pi^-) \)

\[(p + \bar{p}) / (\pi^+ + \pi^-) \]

\(\text{Pb-Pb} \)

\(60-80\% \)
[p-Pb 5-10 % and pp] Comparison to models

- Kraków¹: event-by-event (3+1)-D perfect fluid hydrodynamic
 - Reproduces particle spectra **reasonably well**
- DPMJET²: QCD-inspired model based on Glauber-Gribov formalism
 - **Fails** to reproduce particle spectra
- EPOS-LHC: π, K and p reasonably well reproduced especially at low p_T
 - **EPOS-LHC** agrees better in low p_T ranges
- DIPSY⁴ with color ropes correctly reproduces the p/π shape at low p_T, → better agreement at higher p_T and low $\langle dN_{ch}/d\eta \rangle$
- HERWIG⁵ is an event generator that performs simulations at next-to-leading order in QCD → **Fails** to describe data