Jul 11, 2019

Snapshots of fireballs at freeze-out from heavy-ion collisions at different energies

Ivan Melo (Žilina) & Boris Tomášik (Banská Bystrica)

Motivation

Phase diagram of strongly interacting matter can be explored with heavy-ion collisions at various energies

Dependences of various variables on energy E are studied for that purpose

Here we reconstruct T(E) and $v_t(E)$ of the fireball at the moment of the kinetic freeze-out from fits to p, spectra of p, anti-p, π^+ , π^- , K^+ , K^- from the most central collisions

Scenario with two freeze-outs, chemical and kinetic :

Blast wave model kinetic freeze-out implemented in DRAGON MC tool

P_t spectra fits typically do not include resonance decays See, e.g., ALICE Collaboration ArXiv:1303.0737[hep-ex]: Centrality dependence of pi,K,p production in Pb-Pb at 2.76 TeV

DRAGON

B. Tomášik, Comp. Phys. Commun. 180 (2009) 1642- 1653.

DRAGON is MC code based on Blast Wave model + decays of unstable resonances, 277 hadrons included + possible fragmentation of fireball is included

$$E \frac{d^3 N}{dp^3} = \int_{\Sigma} S(x,p) d^4 x \qquad S(x,p) d^4 x = g_i \frac{m_t \cosh(\eta - y)}{(2\pi)^3} \left(\exp\left(\frac{p_\mu u^\mu - \mu_i}{T}\right) \pm 1 \right)^{-1} \theta \left(1 - \frac{r}{R}\right) \\ \times r \, dr \, d\varphi \, \delta(\tau - \tau_0) \, \tau \, d\tau \, d\eta \,.$$
 Uniform distribution within F

Boost invariant and cylindrically symmetric

Freeze-out at const proper time

R is radius of fireball at freeze-out

B. Abelev et al. [ALICE collaboration], Phys. Rev. C 88, 044910 (2013).

 $T = T_{kin}$ freeze-out temperature, η_f transverse flow gradient, n profile of transverse velocity

Input data from STAR & ALICE

Interactions maintain partial equilibrium between stable
hadrons and resonances through which they interact, e.g

 $\rho \leftrightarrow \pi\pi$ $N_{\pi} + 2 N_{\rho}$ conserved

T critical

Т

chemical

kinetic

$\sqrt{s_{NN}} \; [\text{GeV}]$	T [MeV]	$\mu_B \; [\text{MeV}]$	$\mu_S \; [{ m MeV}]$
7.7	144.3	389.2	89.5
11.5	149.4	287.3	64.4
19.6	153.9	187.9	45.3
27	155.0	144.4	33.5
39	156.4	103.2	24.5
62.4	160.3	69.8	16.7
130	154.0	29.0	2.4
200	164.3	28.4	5.6
2760	156.0	0.0	0.0

These values reproduce the ratios of hadron multiplicities we take them as input

Pions, kaons, protons and resonances develop chemical potentials below $T_{chemical}$

Experimental data

We fitted p₊ spectra of *p*, anti-*p*, π^+ , π^- , K^+ , K^- from the most central collisions at $\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27, 39 \text{ GeV}$ STAR [1], p_t < 2 GeV STAR [2], $p_t < \sim 0.7 - 1.1 \text{ GeV}$ $\sqrt{s_{_{NN}}} = 62.3, 130, 200 \text{ GeV}$ and $\sqrt{s_{NN}} = 2760 \text{ GeV}$ ALICE [3] p, < 2 GeV

- L. Adamczyk et al. [STAR collaboration], Phys. Rev. C 96, 044904 (2017). [1] [2] [3]
 - B.I. Abelev et al. [STAR collaboration], Phys. Rev. C 79, 034909 (2009).
 - B. Abelev et al. [ALICE collaboration], Phys. Rev. C 88, 044910 (2013).

MADAI fitting technique

- The best fit point (T, η_f ,n) was found using MADAI package [4], a Monte Carlo exploration of the 3-parameter space weighted by the posterior probability
- First, 400 training points are generated at random
- p_t spectra were generated in each training point with DRAGON (0.5 5 hours/point) for each of 6 species, spectrum is normalized independently
- Posterior probability in points other than training points is estimated with Gaussian emulator trained on the training points
- Output of MADAI is the best fit point + uncertainties + correlation matrix among parameters (can be displayed as 2-dim projections of the posterior distribution)
 - [4] J. Novak, K. Novak, S. Pratt, C. E. Coleman-Smith and K. L. Wolpert Determining Fundamental Properties of Matter Created in Ultrarelativistic Heavy-Ion Collisions, arXiv:1303.5769 [nucl-th] (2013). http://arxiv.org/abs/1303.5769

MADAI: 2-dim projections of posterior probability

7/13

Best fit parameters

 χ^2 fit was performed as an independent check

$\sqrt{s_{NN}}$ [GeV]	$T \; [MeV]$	η_f	n	$\chi^2\!\!/{ m N}_{ m dpf}$	< v _t >
7.7	102.0 ± 2.0	0.620 ± 0.016	0.726 ± 0.073	0.83	0.45
11.6	103.6 ± 1.5	0.632 ± 0.012	0.792 ± 0.069	0.66	0.45
19	98.1 ± 1.6	0.711 ± 0.009	1.122 ± 0.064	0.38	0.46
27	97.4 ± 1.4	0.715 ± 0.007	1.022 ± 0.048	0.68	0.47
39	98.5 ± 1.4	0.729 ± 0.007	1.006 ± 0.045	0.47	0.49
62	80.2 ± 0.8	0.756 ± 0.007	0.689 ± 0.020	0.93	0.56
130	75.0 ± 0.8	0.797 ± 0.006	0.760 ± 0.015	1.07	0.58
200	75.4 ± 1.8	0.841 ± 0.012	0.810 ± 0.020	0.25	0.60
2760	78.3 ± 1.6	0.903 ± 0.005	0.766 ± 0.018	0.32	0.65

$$v_t = \tanh \eta_t = \eta_f \left(\frac{r}{R}\right)^n \longrightarrow \langle v_t \rangle = \frac{2}{n+2}\eta_f$$

Energy dependence of the freeze-out parameters

9/13

Transverse momentum spectra at different energies + ratio data/MC

Anatomy of spectra

Fraction of π -, K-, p coming either from a given resonance or direct production

Anatomy of spectra cont'd

• Fraction of resonance-produced hadrons goes down as energy goes up

E = 7.7 GeV: $T_{ch} = 144.3 \text{ MeV}$ $T_{kin} = 102.0 \text{ MeV}$ E = 200 GeV: $T_{ch} = 164.3 \text{ MeV}$ $T_{kin} = 75.4 \text{ MeV}$

• Fraction of resonance-produced hadrons becomes flat at high energy unlike at low energy

$$\Delta$$
- \rightarrow n + π -, m _{\wedge} = 1 232 MeV

Δ- decay happens closely above the threshold, so that daughter particles do not acquire high momentum,

$$p_{t} = 227.7 \text{ MeV}$$

In combination with small transverse expansion velocity this causes that pions from such decays stay at low pt

 $p_{t} = 500 \text{ MeV}$ for 7.7 GeV $p_{t} = 1.090 \text{ MeV}$ for 200 GeV

The same applies for kaons from the decay of Φ .

Summary

• With increase of collision energy the fireball cools down more and develops stronger transverse expansion

- Although the freeze-out temperature seems to show a sharp step between 39 and 62.4 GeV, it may be connected with different coverage of p_t intervals
- Full results with resonances coincide with those with only directly produced hadrons, i.e. no resonances, except for the two lowest collision energies.
- Lowest p_t pions at LHC are underestimated by the fits (unlike in nonequilibrium Cracow freeze-out model)
- A more comprehensive study which will include the centrality dependence is being elaborated