

Inclusive Jets: Why?

Jets: collimated particle clusters
 <= surrogates of quarks & gluons produced in hard interaction

Also common background for BSM searches in hadronic final state

- Information from all sub-detectors are combined to reconstruct and identify particles (Particle Flow) → PF candidates
- Jets, in CMS, are reconstructed with PF candidates using anti-kT algoirthm

Understanding Jets and Jet Algorithms

 Factorized approach to match energy of detector level jets to particle level jets (on avergae)

Choice of jet size:

New results from CMS CMS-PAS-SMP-19-003

Interplay between loosing radiation vs adding contamination from underlying event

Nonperturbative Correction for Fixed Order Prediction

- Fixed order calculation provides differntial cross section for parton level jets but jets in data are made from hadrons => needs additional correction
- Based on MC prediction from hadronization models & MPI tunes in parton shower

Hadronization correction is larger more small jet sizes & MPI correction has

Correction = average from Powheg+Pythia8 & Powheg+Herwig++
 Uncertainty = (difference of Powheg+Pythia8 & Powheg+Herwig++)/2

Cross Section of Inclusive Jets at $\sqrt{s} = 8$ and 2.76 TeV

Inclusive jet cross section is well described by NLO calculations with NP and EWK corrections

Ratio of inclusive jet cross sections between two different \sqrt{s} is sensitive to PDF

 Fixed order prediction is compatible to data within systematics for cross section ratio

Cross Section of Inclusive Jets at $\sqrt{s} = 13 \text{ TeV}$

Inclusive jet data is sensitive to PDF

MMHT, NNPDF give similar Prediction to CT14NLO

CMS-SMP-15-007

Two LO predictions are in opposite directions w.r.t. data

Powheg+Pythia8 is between Pythia8 & Herwig++, describes data quite well

For AK4 jets, NLO+PS provides better description compared to fixed 6 order calculation

Comparison of Ratio of Cross Sections at $\sqrt{s} = 7 \text{ TeV}$

- Good description of ratio in data by fixed order NLO prediction with nonperturbative correction
- Better modelling of data by using NLO generator followed by parton shower;
 Shows the importance of final state radiation to describe the ratio

Comparison of Ratio of Cross Sections at $\sqrt{s} = 13 \text{ TeV}$

 $d^2\sigma/dp_Tdy (AKx)/d^2\sigma/dp_Tdy (AK4)$

- NLO + PS prediction describes data well till moderate values of jet radii and also at high jet pT
- Deviation occurs in low pT region for large jet sizes

Comparison of Ratio of Cross Sections

- $(\sigma^{AKn} \sigma^{AK4})$: 3-jet cross section computed with terms up to a_s^4
 - hep-ph:0110315,1101.2665

- Ratio = $(\sigma^{AKn} \sigma^{AK4})/\sigma^{AK4} + 1$
- Calculated using NLOJet++ (in FastNLO framework)

CMS-PAS-SMP-19-003

- Good description of data by NLO prediction at high pT
- NP correction is essential to describe data
- LO->NLO: Prediction comes significantly closer to data

Comparison of Ratio of Cross Sections vs R

CMS-PAS-SMP-19-003

Inclusive jet cross sections are determined in pT and y bins for all the jet sizes Ratio is taken with respect to the AK4 jet cross section in Herwig7 in the same pT and y bin

Fixed order prediction shows a different trend of the ratio versus R as compared to MC predictions

(fixed order prediction at NLO)

Comparison of Ratio of Cross Sections vs R

Inclusive jet cross sections are determined in pT and y bins for all the jet sizes

Ratio is taken with respect to AK4 inclusive jet cross section in the same pT and y bin

Fixed leading order prediction shows a different trend of the ratio versus R MC predictions are quite stable with R as compared to data $\frac{1}{2}$

(ratio of two fixed order NLO predictions is at LO <= change compared to last slide)

11

But please don't judge predictions on an absolute scale!!

Summary & Outlook

- Wealth of inclusive jet data at 13 TeV is being analyzed by CMS (both absolute cross sections and ratios)
- Measurements are useful to constrain PDF, sources of theory uncertainties, to understand p-QCD dynamics at different jet sizes,...
- Ratio of cross section of different jet sizes emphasizes the need of resummation by parton shower to describe trend as a function of jet size
- Measurement also shows the importance of nonperturbative correction for fixed order prediction and urges the quest for higher order calculation

More Material..

Comparison of Ratio of Cross Sections vs R

Inclusive jet cross sections are determined in pT and y bins for all the jet sizes

Ratio is taken with respect to AK4 inclusive jet cross section in the same pT and y bin

Fixed order prediction shows a different trend of the ratio versus R MC predictions are quite stable with R as compared to data

Similar trend in different y bins

Unfolding: Journey of Jets from Detector to Particle

Unfolding removes detector effects (inefficiency & resolution)

Technique used: D'Agostini as central choice

cross checked with SVD, Bin-by-bin, χ^2 minimization with Tikhonov regularization

- MC is corrected to match jet energy scale & resolution in data
- Response matrix made using the closest detector level-particle level jet pairs within ΔR < 0.5 * (jet size)
- Response matrix and correlation matrix are mostly diagonal

Experimental Systematic Uncertainty for Cross Section Ratio

- * Statistical unc, derived using delete-10% Jackknife method, is comparable to experimental systematics
- At low pT, triggers are prescaled
- => stat unc is larger
 The madium nT DM statistics dominate
- In medium pT, RM statistics dominates stat unc
- * Jet energy scale mostly cancels in ratio, statistical component of JES dominates at high pT
- * Extra correction, R-dependent corrections arise from MC based correction on jets not directly calibrated in experiment
- * PU component of JER unc causes larger unc for large jet sizes
- * Radius dependence comes through unc $_{16}$ from extra correction, JER

Jet Energy Calibration & Resolution Response correction as a function of η by balancing dijet / minimisig MET (MPF)

- Absolute scale correction using photon+jet, Z+jet balance
- Additional correction for data using combination of photon+jet, Z+jet, multijet

Jet Energy Calibration

- Cross-section measurement depends crucially on energy calibration and resolution - (steep spectra mis-measurement leads to bin migration)
- Factorised approach to match energy scale (mean of $(pT_{Det} pT_{Gen})/pT_{Gen}$) of detector level jets to particle level jets (on avergae)

L1: Pile-up subtraction by removing tracks coming from secondary vertices and neutrals by rea-subtraction using pile-up simulation and random cone method? Applied to data

L2 & L3 L2L3 Residual

L2 & L3: Correction as a function of jet pseudorapidity and $p_{\scriptscriptstyle T}$ based on simulation

L2L3: Additional correction for data based on MET minimisation in γ/Z + jet, dijet events

CMS DP-2018/028

Jet Energy Resolution

- Cross-section measurement depends crucially on energy calibration and resolution → (steep spectra mis-measurement leads to bin migration)
- Resolution = spread in $(pT_{Det} pT_{Gen})/pT_{Gen}$
- Effect of energy resolution appears through unfolding => leads to systematic uncertainty
- Jet energy resolution (JER) in MC is obtained (after applying JEC) by matching detector level jets to particle level jets,
- Data/MC scale factor is derived using photon+jet balance, di-jet asymmetry
- Uncertainty in JER comes from ISR+FSR, pile-up contamination, OOC showering, difference in flavour response ...

CMS DP-2018/028

Effect of Pile up below pt <100 GeV

Uncertainty Jet Energy Calibration

Normally below 1-2% in the phase space used for differential cross-section

Uncertainty Components:

Combined y, Z-> ee, Z-> mumu
reference scale & ISR-FSR
JER SF & ISR-FSR
Bias from residual offset

PYTHIA8 / HERWIG++ difference for parton response after data-based JEC

CMS JME-2013-004

Closure of lumi weigted correction per era

Response difference between

uds, b, c, gluon is crucial (gluon radiation pattern is less tuned in parton shower)