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The theoretical study of correlations of the linear and circular polariza-
tions in the system of two photons has been performed. The polarization
of a two-photon state is described by the one-photon Stokes parameters
and by the components of the correlation “tensor” in the Stokes space. It
is shown that the correlations between the Stokes parameters in the case
of the two-photon decays 7 — 2v, n — 2v, K? — 2+, K% — 2+ and
the cascade process |0) — |1) +~v — |0) + 27 ( here |0) and |1) are states
with the spin 0 and 1, respectively ) have the purely quantum character
— the Bell-type incoherence inequalities for the components of the correla-
tion “tensor”, established previously for the case of classical “mixtures”,
are violated ( i.e. there is always one case when the modulus of sum of two
diagonal components of the correlation “tensor” exceeds unity ). The gen-
eral analysis of the registration procedure for the system of two correlated
photons by two one-photon detectors is performed.
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1 Introduction

Previously, in the works [1-5] the spin correlations of two free particles
with spin 1/2 [1-4], as well as the angular correlations between the flight
directions of decay products of two particles or resonances [5], reflecting
the spin correlations in the system of two unstable particles with arbitrary
spin, have been analyzed in detail. In doing so, the spin states of each of
the particles were set in the respective rest frames, which is possible only
at nonzero masses of both the particles.

In the present work we study the correlation properties of the system
of two photons. Since the photon mass is equal to zero, the introduction
of spin as the internal angular momentum in the rest frame is inapplicable
in this case, and, thus, for describing the photon polarization the special
consideration is required.

2 Density matrix of the two-photon system

Let us consider the system of two photons with the momenta k; and k.
We introduce two systems of coordinate axes: (x,y,z) with the axis z
parallel to the momentum k; of the first photon, and (#, 7, Z) with the axis
Z parallel to the momentum ks of the second photon. Let us choose the
axes x and ¥ so that they were parallel to each other and perpendicular to
the plane passing through the momenta k; and k.

Analogously to the spin density matrix of two particles with spin 1/2
(see, for example, [4]), we can represent the polarization density matrix of
two photons in the form:



(1)

?

(2)

, 0, are the Pauli matrices; €

(1)

Here o ./ denotes the Stokes parameters

of the first photon [6-8], defined in the system of axes (z,y, 2), 6272) denotes
the Stokes parameters of the second photon, defined in the system of axes
(2,9, 2), Ty is the correlation "tensor” in the Stokes space, describing the
correlation of polarizations of (tllgle@l)cirst and second photons. For indepen-

dent photons we have Tj;, = €, ’¢,”’. In the general case such an equality
does not hold.

Let |3,4) and |3, —) be the one-photon states with the full linear po-
larization along the axes & and y, respectively; let |2, 4+) and |2, —) be the
one-photon states with the right (helicity +1) and left (helicity —1) circu-
lar polarization, respectively, and let |1,4) and |1, —) be the one-photon
states with the full linear polarization along the axis directed at the angles
7/4 and 37/4, respectively, with respect to the axis x.

Then, by definition, the one-photon Stokes parameters are as follows:

€ = (1/2)(Wi(+) — Wi(_)), where Wi(+) and Wi(_) are the probabilities of
registering the photon in the states |i,4) and |i, —), respectively (Wi(Jr) +
Wi(_) = 1). In so doing, 7 = /€2 + €3 is the degree of linear polarization
and €5 is the degree of circular polarization, which are invariant with respect
to rotations in the plane (z,y).

Components of the “tensor” T;; can be determined by using the follow-
ing probabilistic formula (compare with [4]):

1 _ _ _
T = 4 (W'(Z’Jr) - Wi(k’—i—) - W'(;fr’ ) + Wz(k ))- (2)

Z’ bl Z’

Here i = 1,2,3, k = 1,2, 3; W;Z’Jr) is the probability of registering the
first photon in the state |7, +) and the second photon — in the state |k, +);
Wi(’;’ﬂ is the probability of registering the first photon in the state |/, —)
and the second photon — in the state |k, +); Wi(;:’_) is the probability of
registering the first photon in the state |i, +) and the second photon — in
the state |k, —); Wi(;’_) is the probability of registering the first photon in
the state |7, —) and the second photon — in the state |k, —).



In accordance with the normalization condition,

W W e 1

In the case of the entirely unpolarized photons we have: 651) = 652) =0,
Ty = 0 (all the Stokes parameters and all components of the correlation
tensor equal zero).

3 Covariant Stokes parameters

The unit vector of photon polarization e is directed transversely to the
photon momentum k in any frame. In accordance with this, we may con-
sider the unit polarization vector e as the spatial part of the 4-vector e,
which is subjected, at the transition to a new frame, to the gradient trans-
formation in addition to the Lorentz transformation. If in the frame 1 the
polarization vector e satisfies the transversality condition ek = 0, then in
the frame 2 the polarization vector is defined as the spatial part of the
4-vector [8]:

eu
e =e—k—. 3
Here u is the 4-velocity of the frame 2, k is the 4-momentum of the
photon, e is the 4-vector being orthogonal to k (ke = 0), whose components
in the frame 1 are equal to (0, e), eu and ku are the scalar products of the
respective 4-vectors.

It is easy to see that the 4-vector ¢’ obeys the conditions ¢'u = ¢’k = 0,
which correspond to the property of transversality of the photon: in the
frame 2, where u = 0, the components of the 4-vector ¢’ amount to (0, e');
in doing so, |e'| =1, e’k = 0.

Let us decompose the 4-dimensional polarization vector e through two 4-
dimensional unit vectors y; and y» satisfying the orthogonality conditions
Yixe = 0, ik = ok = 0. We may write: e = ¢yy1 4+ co2)2, where
c1 = ex1, ¢ = eYq are complex numbers, |ci| = |¢o] = 1. At the gradient
transformation (3) we obtain:
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X1 =X T 2= ” (4)

[t is easy to see that /x| = ex1 = ¢1, €'x4, = exs = ¢9. This means

that the photon density matrix p; = ¢;c} is invariant with respect to the
Lorentz transformations. Within such a definition, all the Stokes parame-
ters [6-8] are Lorentz-invariant:

€1 =2Re(c1c}), e =2Im(c1ch), €3 =|c1|* = ||

One should take into account the change of spatial orientation of polar-
ization unit vectors in accordance with the three-dimensional transversality
condition:

x1k=0, xk=0, x;x;=0.

It is clear that at the transition from the frame 1 to the frame 2, moving
with the velocity v with respect to the frame 1, the polarization unit vectors
turn around the axis parallel to the vector [vk] by the angle 6 equaling the
angle between the photon momentum k in the frame 1 and the photon
momentum K’ in the frame 2.

In particular, if in the frame 1 the vector x; is chosen to be parallel to
the vector [vk], then at the transition to the frame 2 the direction of the
vector x; coincides with x;’ and, meantime, the angle between the vectors
X3 and x5’ in the plane (v, k) is equal to the angle # between the vectors
k and k. Let us note that, as a result of the Lorentz transformation along
the velocity v, the angle between the photon momentum and the transfer
velocity increases, which corresponds to the positive angle of rotation ¢
around the vector [vk].



4 Correlations between the Stokes parameters of two
photons

In the case of a system of two photons (see Section 2) we have chosen
the pair of transverse unit vectors of polarization of the first and second
photons in the same direction [kik,], which is perpendicular to the plane
passing through the momenta of two photons k; and ky (x; = x;). Two
other unit vectors of polarization of the first and second photons satisfy
the equalities:

XoX1 = Xoki =0, XoX1 = Xoka =0, XaXxo = cos f3,
where (3 is the angle between the momenta k; and k.

We will consider the transverse unit vectors as spatial parts of the unit
4-vectors Y1 and Ya, Y1 and Yo; let us introduce further the gradient trans-
formations at the transition to the frame moving with the 4-velocity wu:

/ k Xlu / k XQU
X1 = 1k1 X2 = 1k1
% Rty 2t 5
X1 = 25— kQ X2 = 2 kQ ( )

In the basis of the 4-vectors (5) the polarization density matrix of two
photons (1) is invariant with respect to the Lorentz transformations. In
accordance with this, the Stokes parameters of the first and second photons

(1) _(2)

e; ,€, and all the components of the correlation tensor Ty (i,k =1,2,3)

are Lorentz-invariant.

Due to the transversality of polarization unit vectors in any frame, at
the transition from the initial frame 1 to the frame 2, moving with the
velocity v with respect to the frame 1, their spatial orientation changes:
the unit vectors of polarization of the first photon x; and x, turn around
the vector [v k;] by the angle

|[k1k'1]|] . [(7 —1)cosay — (v/c) . (6)

0, = 1
1 arcsm[ Tk ~ (v/c) cos sinaq |,
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and the unit vectors of polarization of the second photon x; and x, turn
around the vector [v ky] by the angle #5 determined analogously to (6), with
replacing a; by as. Here a; and ay are the angles between the velocity v
and the momenta k; and ks, respectively; v is the Lorentz-factor.

Let us introduce now the frame of the center-of-inertia of two photons.
This frame always exists, if the momenta of two photons are not parallel to
each other. The velocity of the center-of-inertia frame with respect to the
given frame is determined by the formula v = (ky + ky)/(k1 + k2), where
ki = ki, ko = |ko|. It is clear that at the transition to the c.i. frame the
unit vectors of polarization of the first and second photons turn in opposite
directions around the axis being parallel to the vector [k; ks]. In doing so,
in the c.i. frame k; = -k, x;'=x1, X' =—X5'

Let us consider, as an example, the decay 7 — 2. In the 7#’-meson
rest frame (coinciding with the c.i. frame of two y-quanta) the decay
amplitude has the structure: A, ~ ([eM*e®*]n), where n is the unit
vector directed along the momentum of one of the photons, e and e®
are complex unit vectors of polarization of the first and second photon,
respectively, being perpendicular to the vector n.

So, we find that in this case all the Stokes parameters of the first and
second photon are equal to zero (thus, the single-photon states are unpo-

larized: 651) = 6272) =0, 4 k=1, 2,3). Meantime, according to (2), the

two-photon system is correlated: 17, = +1, Ty = +1, T3 = —1, all
the non-diagonal components of the correlation tensor Tj; equaling zero.

Let us remark that the equality T5y = +1, according to which the he-
licities of two photons at the decay 7 — 2+ coincide, follows from the
fact that the 7’-meson has zero spin. Meantime, the equality Th = —1,
according to which the linear polarizations of two ~-quanta are mutual-
ly perpendicular, is the consequence of the negative internal parity of the
m'-meson.

Taking into account the above-considered changes of spatial orientation
of polarization unit vectors, the values of polarization parameters of two ~-
quanta at the decay 7’ — 2+, indicated above, remain valid in any frame

0

(in particular, in the laboratory frame, where the decaying 7°-meson is



moving). It is clear that the same holds also for the decays n — 27,
KY — 27, ) as well as for the para-positronium decay into two y-quanta.

5 Registration of the system of two correlated pho-
tons

The probability of registration of a system of two photons with two one-

photon detectors, selecting the state of the first photon with the Stokes
)

indicated unit vectors x; and x, and the state of the second photon with

parameters f{l),fél),fél , being specified in the representation of above-
the Stokes parameters 552), 552), &g?), being specified in the representation of
the unit vectors x; and X, is described, according to the density matrix
(1), by the following correlation formula:

3

3 3
W4y alg)+ 3 el + 3> Tagg”. (7)

3
=1 k=1 =1 k=1

The “final” Stokes parameters have the meaning of analyzing powers.
In particular, the Compton scattering on an unpolarized electron, selecting
the states with the polarization vector being perpendicular to the scattering
plane and the states with the polarization vector lying in the scattering
plane, is a characteristic analyzer of the photon linear polarization. In the
representation of these states the analyzing power is determined by one
parameter, namely, by the coefficient of left-right azimuthal asymmetry at
the Compton scattering of a linearly polarized photon:

sin® fs.
(o) + (ofeog) — s B

r(w,bs.) = (8)

where 6. is the angle of the photon scattering in the laboratory frame,
w and wy are the photon energies before and after the Compton scatter-
ing, respectively. In the representation of the polarization unit vectors x;,

1) Neglecting the effects of C'P- invariance violation, the C'P-parity of the long-lived neutral kaon K?
is negative. Meantime, the amplitude of the two-photon decay of the short-lived neutral kaon K2 with the
positive (' P-parity has the structure: AKg—>27 ~ (e (W* e (2)*) . In this case the linear polarizations of the
first and second photons, as well as their helicities, are mutually equal: 711 = —1,7T5; = +1,T53 = +1.



Xo and X1, X9, which have been introduced earlier for describing the po-
larization properties of the system of two ~-quanta, the analyzing powers
are related with the "vectors” in the Stokes space (M) = (f{l),(), fél)) and

£ = (.0, €7, where (j = 1,2):

& = (e 00)sin20), € = r(w; 00)cos20;(9)

Here ¢S(C1) ( ¢S(C2)) is the angle between the plane of Compton scattering
of the first (second) photon and the plane (k;, k), passing through the
momenta of two photons. Taking into account the values of components of
the correlation tensor (see above), it follows from the relations (7) and (9)
that the correlation of the planes of Compton scattering of two ~-quanta,
produced in the decay 7 — 2+, will have the form:

Al dy?

IW =
472

— 1 = r(w, O0)) 1 (we, 02 cos 2(0 Y + ). (10)

In the c.i. frame of two photons (k; = —k3) the angle ¢ = ¢S(C1) + ¢S(C2)
is equal to the angle between the planes of Compton scattering of two
photons, and we have:

AW = 1= (e, ) i, 60) cos 20]d0. (11)

Apart from the Compton scattering, any processes of photon absorption

may serve as analyzers of the photon linear polarization, for example — the

deuteron photodisintegration, the meson photoproduction on nucleons and

nuclei, the formation of electon-positron pairs in the Coulomb field of a
nucleus.

If, in doing so, one deals with the c.i. frame of two y-quanta generated
in the decay processes 70 — 27,  — 27, K% — 27, in the parapositronium
decay, in the low-energy electron-positron annihilation, then the correla-
tions of photoproduction planes are described by the formula being similar
to (11) with r(wy, Qs(cl)) — 11, (W, QS(CQ)) — 19, where 71, 1y are the analyzing



powers. The positive sign of r corresponds to the photoproduction mainly
in the plane that is perpendicular to the vector of photon polarization, the
negative sign — to the photoproduction in the plane that is parallel to the
vector of photon polarization.

In particular, the processes of the 7'-meson photoproduction on spinless
nuclei (y+ *He — 7 + *He, v + 2C — 7% + 2C) are ideal analyzers of
the photon linear polarization. In this case the amplitudes of the reactions
have the structure A, ~ (e[kp:]), and, as it is easy to see, the analyzing
power takes the maximum value r = 1.

6 Quantum character of the two-photon correlations

Analogously to the results of the works [4,5] for the correlation properties
of a system of two particles with spin 1/2, in the case of incoherent (“clas-
sical”) mixtures of factorizable two-photon states the modulus of the sum
of any two components of the correlation “tensor” cannot exceed unity.
We see that in the case of decays like 7% — 2+ these incoherence inequali-
ties are violated: the correlations of polarizations of two photons have the
strongly pronounced quantum character. Indeed, in the c.i. frame of two
~v-quanta we have:

T+ Ty =2>1.

Let us consider, from this viewpoint, the cascade decay

0) = 1)+~ 1) = 0)+~

with the emission of two photons (the spins of the initial and final states
equal zero, and the spin of the intermediate state equals 1). Let us denote
by B,, the complex vector, normalized to unity, corresponding to the in-
termediate state with the spin projection m onto the quantization axis. It
is obvious that the amplitude of the cascade transition has the structure:

Ay~ Y (@B (Be®) ~ (eWrel),
m=0,%+1
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where e and e are the vectors of polarization of two cascade photons,
respectively. In the representation of basis unit vectors, introduced above
for the description of the polarization properties of a two-photon system
((x1 = x1) || [kike], the unit vectors x, and X, are parallel to the plane
passing through the momenta of two photons k; and k, ), the Stokes
parameters and the components of the correlation “tensor” (2) have the
values:

Tyo =Ty =T33 ="T3 =To3 =T33 = 0;

2cos 2cost

T = — = —_——
U= 4 cos2 6’ 22 1 + cos?26’

Ty =1, (12)

where # is the angle between the momenta of two photons, as before.

At 6 = 0, when the photon momenta are parallel, we have: Ty = —1
(the photon helicities are mutually opposite, which follows directly from
the fact of conservation of the projection of angular momentum onto the
coordinate axis in the cascade decay). At # = m, when the photon momenta
are antiparallel, Tyy = 41 (the photon helicities are the same).

According to (12), within the interval of angles 7/2 > 6 > 0

T33 4+1T7; > 1,

and within the interval of angles # > 6 > 7/2

Ty + Ty > 1.

So, in this case the incoherence inequalities are also violated.

11
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