

- Only collected 5% of the LHC lifetime dataset!
- Need to upgrade both LHC, and ATLAS.

ATLAS Phase-II
Scoping Document

Many Challenges for ATLAS...

Higher Instantaneous Luminosity:

 $1.8 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$.

Higher Integrated Luminosity:

300 fb⁻¹ \rightarrow 3000 fb⁻¹. (4 ab⁻¹?).

Many Challenges for ATLAS...

ATLAS Phase-II Scoping Document

Higher Instantaneous Luminosity:

$$1.8 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$$
.

Higher Integrated Luminosity:

300 fb⁻¹ \rightarrow 3000 fb⁻¹. (4 ab⁻¹?).

Higher Pile-Up:

$$\langle \mu \rangle = 60 \rightarrow \langle \mu \rangle = 140. (200?).$$

MSU

ATLAS Phase-II Scoping Document

Many Challenges for ATLAS...

Higher Instantaneous Luminosity:

$$1.8 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$$
.

Higher Integrated Luminosity: $300 \text{ fb}^{-1} \rightarrow 3000 \text{ fb}^{-1}$. (4 ab⁻¹?).

Higher Pile-Up: $<\mu> = 60 \rightarrow <\mu> = 140. (200?).$

Higher Radiation Doses: Up to factor 10 increase.

ATLAS Phase-II Scoping Document

Many Challenges for ATLAS...

Higher Instantaneous Luminosity:

$$1.8 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$$
.

Higher Integrated Luminosity:

300 fb⁻¹ \rightarrow 3000 fb⁻¹. (4 ab⁻¹?).

Higher Pile-Up:

$$<\mu> = 60 \rightarrow <\mu> = 140. (200?).$$

Higher Radiation Doses:

Up to factor 10 increase.

Higher Trigger Rates, L1 (Final):

100 kHz (1 kHz) \rightarrow 1 MHz (10 kHz).

Many Challenges for ATLAS...

ATLAS Phase-II Scoping Document

Higher Instantaneous Luminosity:

 $1.8 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Higher Integrated Luminosity: 300 fb⁻¹ \rightarrow 3000 fb⁻¹. (4 ab⁻¹?).

Higher Pile-Up:

 $\langle \mu \rangle = 60 \rightarrow \langle \mu \rangle = 140. (200?).$

Higher Radiation Doses:

Up to factor 10 increase.

Higher Trigger Rates, L1 (Final): 100 kHz (1 kHz) → 1 MHz (10 kHz).

Higher Computing Resource Needs.

Muon Chambers with Improved Readout Granularity / Triggering.

Muon Chambers with Improved Readout Granularity / Triggering.

High Granularity Timing Detector (HGTD): $2.4 < l\eta l < 4.3 (5.0?)$

Muon Chambers with Improved Readout Granularity / Triggering.

High Granularity Timing Detector (HGTD): $2.4 < l\eta l < 4.3 (5.0?)$

Inner Tracker (ITk):
Completely replace ID with All-Silicon.
Improve Tracking & Cope with Radiation.

Muon Chambers with Improved Readout Granularity / Triggering.

High Granularity Timing Detector (HGTD): $2.4 < l\eta l < 4.3 (5.0?)$

LAr & Tile Readout/Power using Radiation Tolerant Technology.

Inner Tracker (ITk):
Completely replace ID with All-Silicon.
Improve Tracking & Cope with Radiation.

Muon Chambers with Improved Readout Granularity / Triggering.

High Granularity Timing Detector (HGTD): 2.4 < lηI < 4.3 (5.0?)

A wide range of improvements to ATLAS Trigger and Data Acquisition.

LAr & Tile Readout/Power using Radiation Tolerant Technology.

Inner Tracker (ITk):
Completely replace ID with All-Silicon.
Improve Tracking & Cope with Radiation.

A wide

High Granularity Timing Detector (HGTD) 2.4 < Inl < 4.3 (5.0?)

The following studies are based on a number of methods:

- Smearing of Truth-Level Information.
- Extrapolation of Run-2 performance and results.
- Representative systematics based on Run-2 knowledge.

Ar & Tile Readout/Power using Radiation Tolerant Technology.

Inner Tracker (ITk):
Completely replace ID with All-Silicon.
mprove Tracking & Cope with Radiation

D. Havden

ATLAS HL-LHC
Prospects

Leptonic Searches

- Improved tracking and calorimetry leads to similar analysis performance despite harsher environment conditions.
- Run 2 → HL-LHC Improvement in Mass(~40%), σB(Factor 10).

ATLAS HL-LHC
Prospects

Diboson Searches

- Search with WW/WZ decaying to ℓvqq (resolved/merged).
- Compared current W/Z tagger efficiency to future tagger with +50% signal efficiency and +factor 2 background rejection.
 - Topologically-clustered calo-jets → track-calocluster jets.

Heavy Resonance Combinations

- To continue getting the most out of our data, we also combine results!
- At the HL-LHC this will be even more important, to catch small excesses across multiple searches with good statistical precision.

The Issue of PDF Uncertainties

The Issue of PDF Uncertainties

The Issue of PDF Uncertainties

- How can we trust our background estimation at extreme mass?
 - Especially when looking for non-resonant new physics this becomes by far the largest limiting factor.

PDF (M(ll)) Uncertainty	@ 3 TeV	@ 4 TeV	@ 5 TeV	@ 6 TeV	@ 7 TeV
CT14	10%	20%	26%	40%	52%
NNPDF	10%	20%	40%	100%	250%

Mass

The Issue of PDF Uncertainties

- How can we trust our background estimation at extreme mass?
 - Especially when looking for non-resonant new physics this becomes by far the largest limiting factor.

PDF (M(ll)) Uncertainty	@ 3 TeV	@ 4 TeV	@ 5 TeV	@ 6 TeV	@ 7 TeV
CT14	10%	20%	26%	40%	52%
NNPDF	10%	20%	40%	100%	250%

- Need PDF description / uncertainty to keep up with experiment!
- Lines between Precision Measurements and Searches blur.
- Prospects for improvement from HL-LHC data studied.
- Also <u>bootstrapping techniques</u> to reduce these kind of uncertainties in real time → Provide greater feedback.

ATLAS HL-LHC Prospects

- R-Parity conserving model, with LSP being stable DM candidate.
- Chargino (χ^{\pm}) \rightarrow Neutralino (χ^{0}) which exits detector leaving "tracklet"

ATLAS HL-LHC Prospects

- R-Parity conserving model, with LSP being stable DM candidate.
- Chargino $(\chi^{\pm}) \rightarrow$ Neutralino (χ^{0}) which exits detector leaving "tracklet"

ATLAS HL-LHC
Prospects

- R-Parity conserving model, with LSP being stable DM candidate.
- Chargino $(\chi^{\pm}) \rightarrow$ Neutralino (χ^{0}) which exits detector leaving "tracklet"

ATLAS HL-LHC Prospects

- R-Parity conserving model, with LSP being stable DM candidate.
- Chargino $(\chi^{\pm}) \rightarrow$ Neutralino (χ^{0}) which exits detector leaving "tracklet"

Large tracking improvements:

- Better quality / shorter tracklets.
- Better fake tracklet rejection.

ATLAS HL-LHC
Prospects

- R-Parity conserving model, with LSP being stable DM candidate.
- Chargino (χ[±]) → Neutralino (χ⁰) which exits detector leaving "tracklet"

- Better quality / shorter tracklets.
- Better fake tracklet rejection.

ATLAS HL-LHC
Prospects

- R-Parity conserving model, with LSP being stable DM candidate.
- Chargino (χ[±]) → Neutralino (χ⁰) which exits detector leaving "tracklet"

efficiency for low pT leptons.

Better fake tracklet rejection.

Long-Lived Particles at the HL-LHC:

ATLAS HL-LHC
Prospects

Dark Photon Search

Big issue from collimated muons causing single μ trigger loss.

Long-Lived Particles at the HL-LHC:

ATLAS HL-LHC
Prospects

Dark Photon Search

- Big issue from collimated muons causing single μ trigger loss.
- New trigger designed to analyse MS hit patterns for multiple-μ.
- Allows analysis to use a lower pT threshold with reasonable rate.

Many Other Search Prospects Studied

2500

 $m_{Z_{\lambda}}$ [GeV]

Many Other Search Prospects Studied

D. Hayden

MSU

Conclusions

- The HL-LHC sometimes <u>feels</u> like the distant future <u>but it's not!</u>
 - Understand BSM searches in this regime and prepare.
 - Prospect studies show great potential for increased sensitivity.

Conclusions

- The HL-LHC sometimes <u>feels</u> like the distant future <u>but it's not!</u>
 - Understand BSM searches in this regime and prepare.
 - Prospect studies show great potential for increased sensitivity.
- We also need to keep thinking about the bigger picture.
 - Combinations of results can boost sensitivity even further.
 - Eventually cross-collaboration, cross-HEP combinations?

Conclusions

- The HL-LHC sometimes <u>feels</u> like the distant future <u>but it's not!</u>
 - Understand BSM searches in this regime and prepare.
 - Prospect studies show great potential for increased sensitivity.
- We also need to keep thinking about the bigger picture.
 - Combinations of results can boost sensitivity even further.
 - Eventually cross-collaboration, cross-HEP combinations?
- Be wary of potential pit falls.
 - What would a discovery at the HL-LHC look like?
 - Need to work closely with the theory community.

Thank you for listening!

Questions?