Hunting for Beyond-Standard-Model physics with the ATLAS detector at the HL-LHC

On behalf of the ATLAS Collaboration

EPS Conference
12th of July 2019

Daniel Hayden
daniel.hayden@cern.ch
What is the HL-LHC?
What is the HL-LHC?

Run-1
Run-2
LS1
LS2
LS3
LS4
LS5

You Are Here

Luminosity [cm$^{-2}$s$^{-1}$]
Integrated luminosity [fb$^{-1}$]

Year
What is the HL-LHC?

You Are Here

Run-1 Run-2 Run-3 LS1 LS2 LS3 LS4 LS5
What is the HL-LHC?
What is the HL-LHC?

• Only collected 5% of the LHC lifetime dataset!

• Need to upgrade both LHC, and ATLAS.

but **WHO** is HL-LHC?
Many Challenges for ATLAS...

Higher Instantaneous Luminosity:
\[1.8 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}. \]

Higher Integrated Luminosity:
\[300 \text{ fb}^{-1} \rightarrow 3000 \text{ fb}^{-1}. \text{(4 ab}^{-1}?). \]
Many Challenges for ATLAS...

Higher Instantaneous Luminosity:

\[1.8 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}. \]

Higher Integrated Luminosity:

\[300 \text{ fb}^{-1} \rightarrow 3000 \text{ fb}^{-1}. \text{ (4 ab}^{-1}?). \]

Higher Pile-Up:

\[<\mu> = 60 \rightarrow <\mu> = 140. \text{ (200?).} \]
Many Challenges for ATLAS…

Higher Instantaneous Luminosity:
1.8×10^{34} cm$^{-2}$s$^{-1}$ → 5×10^{34} cm$^{-2}$s$^{-1}$.

Higher Integrated Luminosity:
300 fb$^{-1}$ → 3000 fb$^{-1}$. (4 ab$^{-1}$?).

Higher Pile-Up:
$\langle \mu \rangle = 60$ → $\langle \mu \rangle = 140$. (200?).

Higher Radiation Doses:
Up to factor 10 increase.
Many Challenges for ATLAS…

Higher Instantaneous Luminosity:
\[1.8 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}. \]

Higher Integrated Luminosity:
\[300 \text{ fb}^{-1} \rightarrow 3000 \text{ fb}^{-1}. (4 \text{ ab}^{-1}?). \]

Higher Pile-Up:
\[<\mu> = 60 \rightarrow <\mu> = 140. (200?). \]

Higher Radiation Doses:
Up to factor 10 increase.

Higher Trigger Rates, L1 (Final):
\[100 \text{ kHz (1 kHz)} \rightarrow 1 \text{ MHz (10 kHz)}. \]
Many Challenges for ATLAS...

Higher Instantaneous Luminosity:
\[1.8 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}\].

Higher Integrated Luminosity:
\[300 \text{ fb}^{-1} \rightarrow 3000 \text{ fb}^{-1}. \ (4 \text{ ab}^{-1}?).\]

Higher Pile-Up:
\[<\mu> = 60 \rightarrow <\mu> = 140. \ (200?).\]

Higher Radiation Doses:
Up to factor 10 increase.

Higher Trigger Rates, L1 (Final):
\[100 \text{ kHz} \ (1 \text{ kHz}) \rightarrow 1 \text{ MHz} \ (10 \text{ kHz}).\]

...And Upgrades to Meet Them!
...And Upgrades to Meet Them!

Muon Chambers with Improved Readout Granularity / Triggering.
…And Upgrades to Meet Them!

Muon Chambers with Improved Readout Granularity / Triggering.

High Granularity Timing Detector (HGTDD): $2.4 < |\eta| < 4.3$ (5.0?)
...And Upgrades to Meet Them!

Muon Chambers with Improved Readout Granularity / Triggering.

High Granularity Timing Detector (HGTD):
\[2.4 < |\eta| < 4.3 \text{ (5.0?)} \]

Inner Tracker (ITk):
Completely replace ID with All-Silicon. Improve Tracking & Cope with Radiation.
...And Upgrades to Meet Them!

Inner Tracker (ITk):
Completely replace ID with All-Silicon. Improve Tracking & Cope with Radiation.

High Granularity Timing Detector (HGTd):
$2.4 < |\eta| < 4.3$ (5.0?)

Muon Chambers with Improved Readout Granularity / Triggering.

LAr & Tile Readout/Power using Radiation Tolerant Technology.
...And Upgrades to Meet Them!

- Muon Chambers with Improved Readout Granularity / Triggering.
- A wide range of improvements to ATLAS Trigger and Data Acquisition.
- LAr & Tile Readout/Power using Radiation Tolerant Technology.
- High Granularity Timing Detector (HGTD): $2.4 < |\eta| < 4.3$ (5.0?)
- Inner Tracker (ITk): Completely replace ID with All-Silicon. Improve Tracking & Cope with Radiation.
...And Upgrades to Meet Them!

The following studies are based on a number of methods:

- Smearing of Truth-Level Information.
- Extrapolation of Run-2 performance and results.
- Representative systematics based on Run-2 knowledge.
Searching for Resonances at the HL-LHC: Leptonic Searches

- Improved tracking and calorimetry leads to similar analysis performance despite harsher environment conditions.
- Run 2 \rightarrow HL-LHC Improvement in Mass(\sim40%), σB(Factor 10).
Searching for Resonances at the HL-LHC: Diboson Searches

- Search with WW/WZ decaying to ℓvqq (resolved/merged).
- Compared current W/Z tagger efficiency to future tagger with +50% signal efficiency and +factor 2 background rejection.
 - Topologically-clustered calo-jets \rightarrow track-calocluster jets.
Searching for Resonances at the HL-LHC:

Heavy Resonance Combinations

- To continue getting the most out of our data, we also combine results!
- At the HL-LHC this will be even more important, to catch small excesses across multiple searches with good statistical precision.
Searching for Resonances at the HL-LHC:

The Issue of PDF Uncertainties

• How can we trust our background estimation at extreme mass?
Searching for New Physics at the HL-LHC: The Issue of PDF Uncertainties

- How can we trust our background estimation at extreme mass?

![Graph showing the relationship between mass and number of Standard Model (SM) processes.](image)
Searching for New Physics at the HL-LHC: The Issue of PDF Uncertainties

- How can we trust our background estimation at extreme mass?
Searching for New Physics at the HL-LHC: The Issue of PDF Uncertainties

• How can we trust our background estimation at extreme mass?
Searching for New Physics at the HL-LHC: The Issue of PDF Uncertainties

- How can we trust our background estimation at extreme mass?
Searching for New Physics at the HL-LHC: The Issue of PDF Uncertainties

- How can we trust our background estimation at extreme mass?

- Especially when looking for non-resonant new physics this becomes by far the largest limiting factor.

<table>
<thead>
<tr>
<th>PDF (M(ℓℓ)) Uncertainty</th>
<th>@ 3 TeV</th>
<th>@ 4 TeV</th>
<th>@ 5 TeV</th>
<th>@ 6 TeV</th>
<th>@ 7 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT14</td>
<td>10%</td>
<td>20%</td>
<td>26%</td>
<td>40%</td>
<td>52%</td>
</tr>
<tr>
<td>NNPDF</td>
<td>10%</td>
<td>20%</td>
<td>40%</td>
<td>100%</td>
<td>250%</td>
</tr>
</tbody>
</table>
Searching for New Physics at the HL-LHC: The Issue of PDF Uncertainties

- How can we trust our background estimation at extreme mass?
- Especially when looking for non-resonant new physics this becomes by far the largest limiting factor.

<table>
<thead>
<tr>
<th>PDF (M(\ell\ell)) Uncertainty</th>
<th>@ 3 TeV</th>
<th>@ 4 TeV</th>
<th>@ 5 TeV</th>
<th>@ 6 TeV</th>
<th>@ 7 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT14</td>
<td>10%</td>
<td>20%</td>
<td>26%</td>
<td>40%</td>
<td>52%</td>
</tr>
<tr>
<td>NNPDF</td>
<td>10%</td>
<td>20%</td>
<td>40%</td>
<td>100%</td>
<td>250%</td>
</tr>
</tbody>
</table>

- Need PDF description / uncertainty to keep up with experiment!
- Lines between Precision Measurements and Searches blur.
- Prospects for improvement from HL-LHC data studied.
- Also bootstrapping techniques to reduce these kind of uncertainties in real time → Provide greater feedback.
Searching for SUSY at the HL-LHC:

- R-Parity conserving model, with LSP being stable DM candidate.
- Chargino (χ^{\pm}) \rightarrow Neutralino (χ^0) which exits detector leaving “tracklet”
Searching for SUSY at the HL-LHC:

- R-Parity conserving model, with LSP being stable DM candidate.

- Chargino (χ^\pm) → Neutralino (χ^0) which exits detector leaving “tracklet”
Searching for SUSY at the HL-LHC:

- R-Parity conserving model, with LSP being stable DM candidate.
- Chargino (χ^\pm) → Neutralino (χ^0) which exits detector leaving “tracklet”
Searching for SUSY at the HL-LHC:

• R-Parity conserving model, with LSP being stable DM candidate.

• Chargino (χ^{\pm}) \rightarrow Neutralino (χ^{0}) which exits detector leaving “tracklet”

Large tracking improvements:
- Better quality / shorter tracklets.
- Better fake tracklet rejection.
Searching for SUSY at the HL-LHC:

- R-Parity conserving model, with LSP being stable DM candidate.
- Chargino (χ^{\pm}) → Neutralino (χ^{0}) which exits detector leaving “tracklet”

Large tracking improvements:
- Better quality / shorter tracklets.
- Better fake tracklet rejection.
Searching for SUSY at the HL-LHC:

- R-Parity conserving model, with LSP being stable DM candidate.
- Chargino (χ^\pm) \rightarrow Neutralino (χ^0) which exits detector leaving “tracklet”

Improvements also from tracking:
- Better quality / shorter tracklets.
- Better fake tracklet rejection.
Long-Lived Particles at the HL-LHC: Dark Photon Search

• Big issue from collimated muons causing single μ trigger loss.
Two new muon trigger algorithms to improve the selection of displaced dark photons decaying to muons on displaced non-pointing muons. A baseline selection used in Run-2. A second trigger, the L0 sagitta muon trigger, has been designed to trigger at the HL-LHC have been presented. The performance of the two triggers has been evaluated on MC samples with respect to the Run-2 baseline selection. A trigger improvement (left). Finally, the results of this study are estimated.

Conclusions
- Big issue from collimated muons causing single μ trigger loss.
- New trigger designed to analyse MS hit patterns for multiple-μ.
- Allows analysis to use a lower pT threshold with reasonable rate.
Searching for New Physics at the HL-LHC: Many Other Search Prospects Studied

ATLAS Preliminary
Projection from Run-2 data
\(\sqrt{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1} \)
Signal region, 2-tag
Scaling from dijet simulation

Dijet mass [GeV]

ATLAS Simulation Preliminary
\(\sqrt{s} = 13 \text{ TeV}, 3 \text{ ab}^{-1} \)
Axial-Vector Mediator
Dirac Fermion DM
\(g_1 = 0.25, g_{\chi} = 1 \)
95% CL limits
Projection from Run-2 data

Wino \(\tilde{\chi}_1^0 \rightarrow W^+ \tilde{\chi}_2^0 Z \tilde{\chi}_1^0 \rightarrow 3L + \text{MET final state} \)

ATLAS Simulation Preliminary
\(\sqrt{s} = 14 \text{ TeV}, 36 \text{ fb}^{-1} \)
95% CL exclusion, multi-bin
5\sigma discovery, inclusive
All limits at 95% CL

3L+MET

Multijet
t\(\bar{t}\)

G_{KK} (2.0 TeV) \times 30
G_{KK} (2.5 TeV) \times 30
G_{KK} (3.0 TeV) \times 30

Events / 100 GeV

ATLAS Preliminary
Projection from Run-2 data
Searching for New Physics at the HL-LHC: Many Other Search Prospects Studied

ATLAS Preliminary
Projection from Run-2 data

- Multijet
- t\bar{t}
- G_{KK} (2.0 TeV) \times 30
- G_{KK} (2.5 TeV) \times 30
- G_{KK} (3.0 TeV) \times 30

Scaling from dijet simulation

Monojet

$3L+\text{MET}$
Conclusions

• The HL-LHC sometimes **feels** like the distant future - **but it’s not!**
 - Understand BSM searches in this regime and prepare.
 - Prospect studies show great potential for increased sensitivity.
Conclusions

• The HL-LHC sometimes *feels* like the distant future - but it’s not!
 - Understand BSM searches in this regime and prepare.
 - Prospect studies show great potential for increased sensitivity.

• We also need to keep thinking about the bigger picture.
 - Combinations of results can boost sensitivity even further.
 - Eventually cross-collaboration, cross-HEP combinations?
Conclusions

• The HL-LHC sometimes feels like the distant future - but it’s not!
 - Understand BSM searches in this regime and prepare.
 - Prospect studies show great potential for increased sensitivity.

• We also need to keep thinking about the bigger picture.
 - Combinations of results can boost sensitivity even further.
 - Eventually cross-collaboration, cross-HEP combinations?

• Be wary of potential pit falls.
 - What would a discovery at the HL-LHC look like?
 - Need to work closely with the theory community.
Thank you for listening!

Questions?