

Search for heavy neutral leptons in events with three charged leptons with CMS detector at LHC

EPS-HEP 2019 Gent, Belgium

A search for a **heavy neutrino** decaying into a charged lepton and a W boson \rightarrow llv is presented.

- ◆ The HNLs are sterile,
- \blacklozenge mixing angles with ν_{SM} : $V_{eN},\,V_{\mu N}$, and $V_{\tau N}$
- ♦ The production cross section and lifetime of N depend on $|V_{IN}|^2$ and its mass $m_{N.}$

Right-handed **HNL** as potential solution for:

- **♦** Baryon asymmetry;
- → dark matter candidate;
- ♦ Smallness of neutrino masses (seesaw mechanism).

2. Background

Two categories: with or without an OppositeSignSameFlavor pair. Background two orders of magnitude higher in final state with an OSSF pair.

Main backgrounds:

- nonprompt leptons;
- WZ and ZZ;
- Conversion, $Z\gamma^*$ with γ^* $\rightarrow 2\ell$.

3. Event selection

Only prompt decays are considered.

Kinematically distinct cases for N masses below and above that of the W boson, two search regions are defined.

Search variables:

- → M_{3I}, for background rejection;
- → M_T, very high for high m_N;
- ♦ Main proxy for m_N.

Low mass (m_N < m_W)

- ◆ Only use events without OSSF
 → probing LNV, Majorana v;
- ◆ Compressed p_T spectra, low p_T thresholds;
- lacktriangle categorize according to P_T .

High mass $(m_N > m_W)$

- ◆ Both events with and without OSSF;
- ♦ high p_T thresholds;
- ◆ Relatively high E_T and very high M_{3I}

200

M_T (GeV)

- For **small N** mass and couplings, the **decay length can be significantly large** → reduced acceptance for this specific search;
- a-posteriori correction applied to account for the finite lifetime
- \rightarrow sensitivity degrades with decreasing $|V_{IN}|^2$;
- effect is partially compensated by signal cross section growth $\propto |V_{\ell \rm N}|^2$

No deviations from the SM are observed; upper limits set on $v_{SM}N$ coupling strengths V_{eN} and $V_{\mu N}$.

New sensitivity → These are the **first direct limits** for N masses **above 500 GeV** and the first limits obtained at a hadron collider for N masses below 40 GeV.