A search for a heavy neutrino decaying into a charged lepton and a W boson is presented.

- The HNLs are sterile,
- mixing angles with V_{eN}, $V_{\mu N}$, and $V_{\tau N}$
- The production cross section and lifetime of N depend on $|V_{eN}|^2$ and its mass m_N.

Right-handed HNL as potential solution for:
- Baryon asymmetry;
- dark matter candidate;
- Smallness of neutrino masses (seesaw mechanism).

Two categories: with or without an OppositeSignSameFlavor pair. Background two orders of magnitude higher in final state with an OSSF pair.

Main backgrounds:
- nonprompt leptons;
- WZ and ZZ;
- Conversion, Zγ with γ^* → 2γ.

Introduction

Event selection

Only prompt decays are considered. Kinematically distinct cases for N masses below and above that of the W boson, two search regions are defined.

Search variables:
- M_{3l}, for background rejection;
- M_T, very high for high m_N;
- M_{min}, proxy for m_N.

Low mass ($m_N < m_W$)
- Only use events without OSSF → probing LNV, Majorana ν;
- Compressed p_T spectra, low p_T thresholds;
- Categorize according to p_T.

High mass ($m_N > m_W$)
- Both events with and without OSSF;
- High p_T thresholds;
- Relatively high E_T and very high M_{3l}.

Results

Lifetime correction
- For small N mass and couplings, the decay length can be significantly large → reduced acceptance for this specific search;
- p_T correlation applied to account for the finite lifetime → sensitivity degrades with decreasing $|V_{eN}|$;
- Effect is partially compensated by signal cross section growth $\propto |V_{eN}|^2$.

No deviations from the SM are observed; upper limits set on $V_{eN}N$ coupling strengths V_{eN} and $V_{\mu N}$.

New sensitivity → These are the first direct limits for N masses above 500 GeV and the first limits obtained at a hadron collider for N masses below 40 GeV.

Martina Vit, on behalf of the CMS Collaboration