SOFT B-HADRON TAGGING

WITH THE ATLAS DETECTOR

Tomohiro Yamazaki (The University of Tokyo) on behalf of the ATLAS collaboration

EPS-HEP 2019 in Ghent ATLAS-CONF-2019-027

Introduction

- To identify a b-hadron in ATLAS, the particle's long lifetime and large mass are exploited.
- The standard b-tagging performance is limited for low p_T b-hadrons because it relies on the calorimeter jet reconstruction (Jet p_T > 20 GeV).
- In compressed 3rd generation SUSY (stop and sbottom) searches, the final states contain low p_T
 b-hadrons which cannot be tagged by the standard b-tagging.
- Challenging signature due to the short flight length of the low p_T b-hadron.
- Three methods targeting such low p_T b-hadrons have been developed.

Algorithms

Track jet b-tagging

Track Jet Reconstruction

- · Jet formed by tracks without calorimeter clusters
- Anti-k_t algorithm
- Jet p_T > 5 GeV
- Variable radius cone size

$$R(p_T) = (30 \text{ GeV})/p_T$$

 $R_{\text{max}} = 0.4, R_{\text{min}} = 0.02$

MV2c10 Algorithm

- Same as the standard b-tagging for calorimeter jets
- Multivariate discriminator based on the following low-level taggers
 - IP2D, IP3D: 2D and 3D likelihoods on impact parameter significance
 - SV1: Secondary vertex finder
 - JetFitter: Topological secondary and tertiary vertices

Track based Low p_T Vertex Tagger (T-LVT)

Track selection

- Important step to reduce fake vertices originating from random-crossing tracks
- Require large impact parameters (IP) transverse IP: $d_0/\sigma_{d_0}>1.7$ longitudinal IP: $z_0/\sigma_{z_0}>0.5$
- Track-jet overlap removal $\Delta R({\rm track, jet}) > 0.4$
- Pile-up track suppression $|z_0\sin\theta| < 1.2 \text{ mm}$

Vertex Fitting

- Try to fit vertices from all combination of 2 tracks in the selected track collection
- 2-track vertex preselection based on $\cos\!\theta$: angle between $m{r}_{SV}$ and $m{p}_{SV}$
- Form n-track vertices (n≥2) from 2-track seeds.

Vertex Selection

- Require separation from PV $L_{3D}/\sigma_{L_{3D}} > 7$ $L_{xy} \in (0.5, 5.0) \; \mathrm{mm}$
- Vertex mass > 600 MeV - Surpress $K_s o \pi^+\pi^-$
- Vertex p_T > 3 GeV
- More selections based on track angles

Track-cluster based Low p_T Vertex Tagger (TC-LVT)

Clustering & Vertex Finding

- Find seed tracks requiring large impact parameters
- Track clustering for each seed
- Find a SV for each cluster
- Similar vertex finding and selection to T-LVT

Performance

• Track b-jet performs well at high p_T

- Vertexing methods optimized for p_T < 20 GeV
- Efficiency of the vertex tagger drops at high p_T due to the track-jet overlap removal

T-LVT

SV multiplicity

Fake Rate

- Track b-jet efficiency is tuned to the T-LVT efficiency to compare the fake rates with the same efficiency in each p_T bin
- The vertexing approaches provide better performance below 15 GeV

Low p_T b-tagging vs Calorimeter-jet-based b-tagging

- Loose and Tight working points are shown for both LVTs
- The threshold on MV2c10 discriminant is varied for jet-based b-tagging
- Significant improvement with respect to the standard calorimeter-jet-based b-tagging for p_T < 15 GeV

