

Community challenges and opportunities for detector R&D

Outcome from the European Particle Physics Strategy Open Symposium in Granada

A.Cattai -CERN-

Inputs & disclaimer

- Documents submitted by the communities for the European Particle Physics Strategy Update https://indico.cern.ch/event/765096/contributions/
- Talks and round table discussion @ R&D session in Granada
- Results from 2 surveys -> status of R&D in Europe by the ECFA detector panel representing ~2900 FTE
 - → recognition of individual achievements

by ECFA 1355 participants

Discussions & inputs from Colleagues and ECFA Detector Panel

but selection of topics & critical views are my own

with apologies to all interesting R&Ds not covered

160 submissions gave an overview of the different researches in different environments

Dealing with detectors:

14 submissions

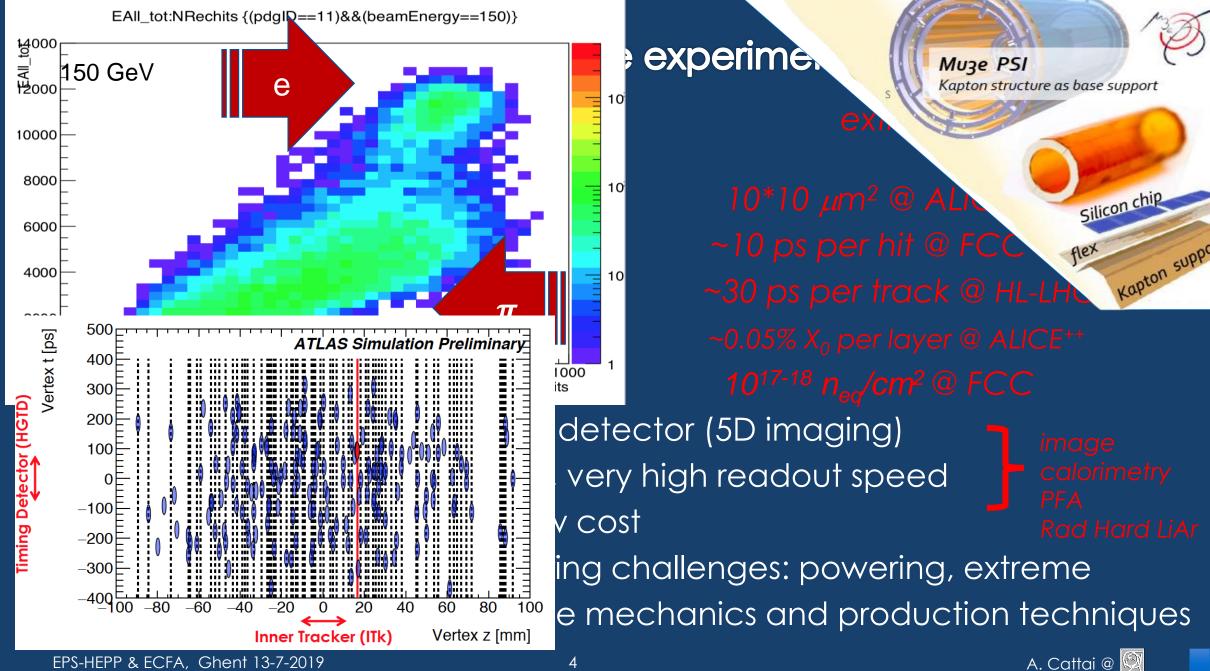
7 submissions

7 submissions

Future colliders (CLIC, FCC, ILC, μ Coll.....)

"The invisible" elusive particles

* Neutrinos near and far detector - Reactor neutrinos

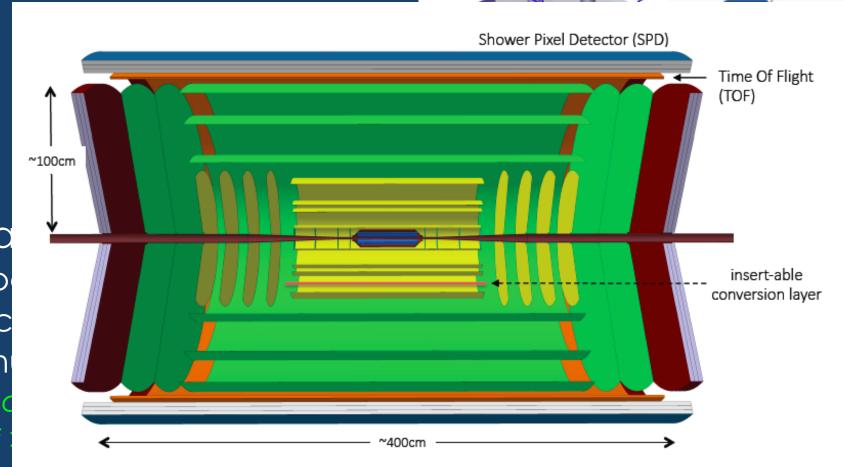

* Low energy high sensitivity (0v2β, g-2, EDM, ...)

Astro-particle and cosmology

* Dark matter detectors

* Cosmic rays - Gravitational waves-Satellite experiments

Very different requirements from many fundamental detector technologies

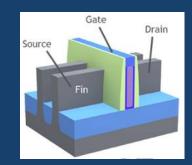

	Solid state Vertex	Solid state Trackers	Gaseous Trackers	Scintillating fibre tracking & calorimetry	Calorimetry	Particle Identification
Challenges	3D, (HV-)CMOS, MAPS, FPCCD, LGAD μ-electronics @ 65nm-28nm	HV-CMOS, Sol, (D)MAPS, LYSO tiles+SiPM, LGAD timing layers	GEM, MM, THGEM, μ-RWELL, μ-PIC, GEMpix, TPC, Drift Chambers, sTGC, RPC	NOL Nano-Organo-Si- Luminophores, Crystal fibers	à la CALICE Si/W, MAPS, LiA,r LYSO, Dual RO, Shower Pixel Detector, Metamaterial	RICHs, TORCH,ToF, ToP
Granularity> space resolution	100x150µm - ALPIDE:27µm*29µm Hybrid: 50x50 µm - CLIC&CLD:25*25 ALICE++	for 50	>100µm ILC: 100µm in r ~ 1mm in z 50 µm ->10µm ILD: TimePix with 5µmX55µm	LHCB Scifi: 80μm, PEBS:55μm ATLAS alpha~25μm SPACAL:1x1 or 2x2 cm2	ECAL 5*5mm**2 HCAL 3*3 cm**2 for PFA with CALICE HL-LHC: 0.5 or 1cm2 Challenge for LiAr 5x20mm2	LHCb single-γ 0.7 mrad LHCb: single-γ 0.2 mrad
Fast & precise timing	40%	Timing Layer: LGAD ~30ps/track	~10nsec 25 ps@PICOSEC	Mu3e: 0.5 - 1ns SPACAL: 20-40ps	25 ps timing 5D calorimetry HL-LCH, μColl: Timing Layer: Lyso+SiPM ~30ps/track	LHCb &TauFV RICH:10ps - TORCH:10-15ps/track ALICE++ ToF: CMOS MAPS or LGAD with time res. ~ 20 ps
Rate capability	oU> 4000 MHz/cm2	FCC-hh: pile-up/bunch Xing O(1000)	2.5 MHz/cm2 μ-RWELL 10MHz/cm2	40 MHz SPACAL: up 3MHz/cm2	FCC-hh 8 charged particles per rapidity unit.	
Rad Hard of detectors & electronics, cables		10^15 neq/cm2 - 10^17 neq/cm2 timing layer 2x10^14-15 neq/cm2	10^16 neq/cm2 1.6 C/cm2	NOL:~10^13 neq/cm2 @- 14C ~10^14 neq/cm2 kGy- >10kGy SiPMS10^12neq/cm2 @-4C SPACAL:~1MGy & 6-10^15 neq/cm2 at 300 fb-1	CLIC~ 20 Mrad/ year in the FWD FCC-hh: 2x10^16 neq/cm2 in EndCap LiAr	~50 kGy
Low material budget	ALICE: 0.35% CLIC: 0.2% CLD:0.3% ALICE++0.05% X0	~2% X0 per layer	CEPC IDEA: Drift chamber: 1.5% X0 & 3%X0 before the pre- shower	1% X0 /layer (complete module) 0.25% (fibre only)		thinner radiators
System integration	mechanics, truly cylindrical sensor, cooling, power, cables	The state of the s	eco-gas, optical read-out	mechanics, cooling, power, cables	mechanics, large area, cooling, power, cables	light carbon-fibre based mirrors - cooling for SiPM - operation in B field, photondet.

• Enormous effort in many directions (40% FTEs are involved in R&D)

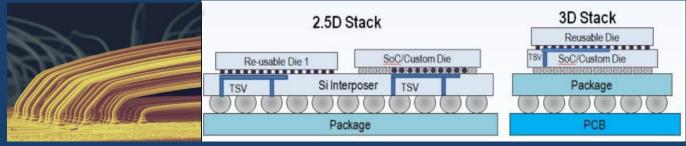
on solid state detectors for vertexing and tracking)

- Planar?
- 3D \$
- Hybrid ?
- Monolithic?

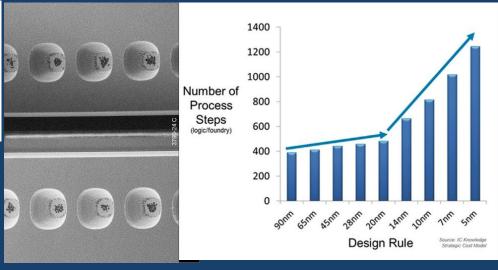
- CMOS MAPS most a
 - Can be thinned to be
 - Can be stitched to c
 - Inherently high gran
 - MALTA →10¹⁵n_{eq}/cm² of hit-rate capabilities of



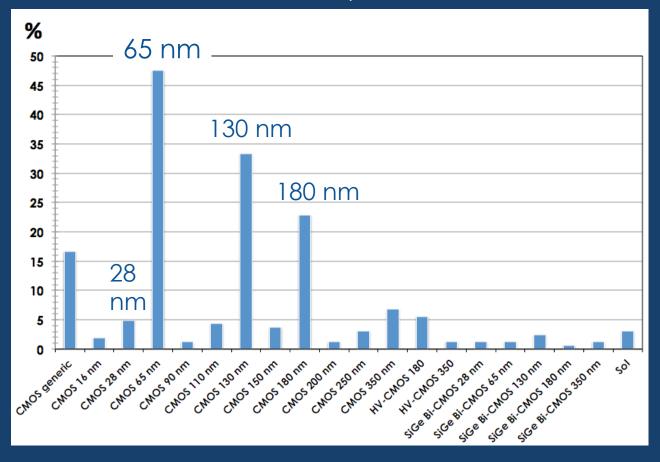
chip

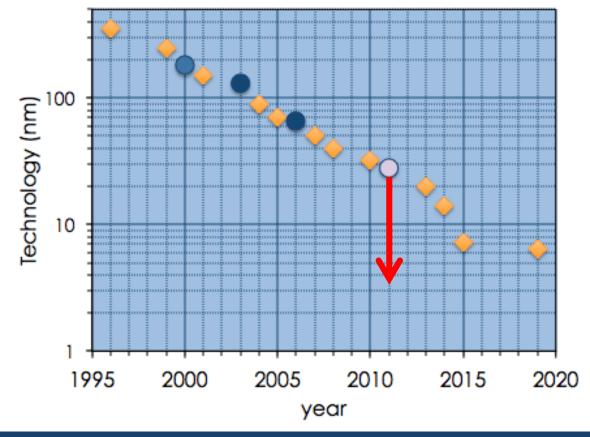

40 μm

The real challenge: RO electronics !!!!!!


- Crucial role in all systems
- Technical challenges and more.....:
 - If down to pitches <20 μ m, high density, rad hard, fast ~10 ps
 - → You need to use electronics in 28 nm node or less
 - → Exploits 3D VI geometries NEW to our community

FinFet @ 14,10,7 nm




- Complexity of the design increases
- Industry-driven technology

Involvement of FTEs in μ -electronics

Technologies exploited by industry

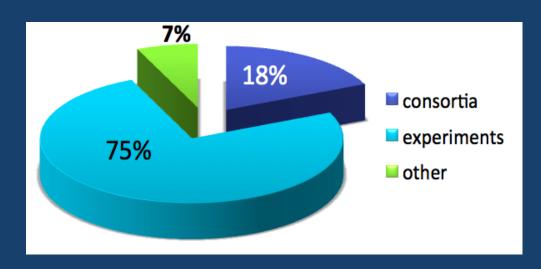
The µ-electronic real challenges

- Many years behind industry
 - → we risk to become obsolete
- The cost of the engineering runs are outrageous !!!!!
 - → We can afford to invest only on a limited amount of technologies
 - → which one ???? strategic choice!
- We are small clients (see D. Contardo talk @Granada)
- → Cross-experiments collaboration mandatory
- → Expensive tools and corresponding user support must be set up in a central way for the entire community
- → Common submissions to foundries need to be organised through central frame contracts
- → Urgency of international coordination & adequate resources for shared programs

$\mathbf{V},$ Dark Matter and known unknowns

Demand for stronger CERN engagement in astroparticle Physics Challenges & synergy with accelerator Physics

- "Radio purity", huge mass, active shielding, large cryogenic infrastructure
- Dual phase operation
- Huge number photo detectors \rightarrow many progresses SiPM & LAPPD



Complex technologies have long (and costly) R&Ds

- Experiments that last a lifetime with thousands of people
 - → Carry along a palette of ineluctable challenges
 - Discussions in Granada were organized around 3 major R&D themes
- Coordination of R&D Distributed everywhere in independent way ?
 Centralized in laboratories and consortia ??
- Human factor How to give recognition to young people? Foster recruitment?
 How to be effective with long term training?
- Technical^{TT} R&D guided by existing experiment ?? Blue sky R&D ??

Blue sky R&D?

- large majority -> R&D driven by well defined requirements of experiments
- minority → consortia (AIDA.....)

Maybe linked to the funding scheme?

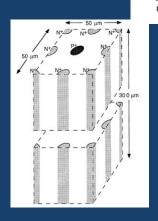
Funding agencies	% of respondents	
International funding program	13	
EU funding program	<mark>32</mark>	
National funding agency	<mark>71</mark>	
Home Institute	<mark>52</mark>	
Other (Mainly private or industry)	1	

a touch of history.....

TPC

Nygren 1974 "..... it was a question

Seguinot, Ypsilantis, Ekelof 1977


Si strip many....1970-80

RPC Santonico, Cardarelli 1981

Charpak, Giomataris, Sauli ~1995

3D Si pillars Parker, Da Via' 1997

Coordination of R&D activities

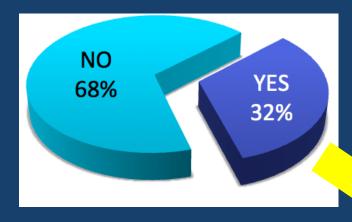
Obvious evidence > Expertise is distributed in many institutions

General opinion > R&D should not be centralized exclusively in large-scale facilities and/or in major labs

that remain key places for exchanges of ideas and their unique technical support

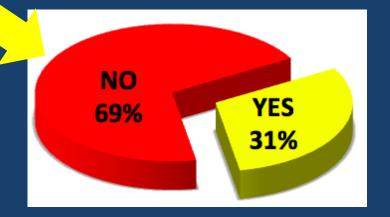
Coordination of R&D activities

- Extend working relationships
 - → Organize "exchange of idea" platforms with a multidisciplinary approach, sources of new technologies, industry
- © Current R&Ds collaborations (eg. RD#, AlDA2020, CALICE, etc.) are effective models of collaboration (Develop, provide access & distribute common tools


 → Most effective framework to share resources with small institutes/users)
 - Strength and establish new ones
 - → Need to optimise the reviewing process and implement regular reassessments in addition to the collaboration internal procedures
- Reflect on how to support and strength the community doing R&D suited for application outside HEP

~80% of respondents perceive that their R&Ds are suited for applications outside fundamental physics

	% of respondents	
Dosimetry	26	
Civil security	18	
Cultural heritage	10	_
Medical	65 %	
Nuclear control	25	
Other **	18 %	\leftarrow
	>> 100 %	


^{**} Photon science, geophysics, volcanology, industry, magnets related, muon & large tomography, data handling, space, agriculture, optics, precision metrology, marine biology, environmental, high-tech engineering, telecommunications,....

Only ~30% of the projects engage in technology transfer programmes

The majority of them have not enough support to solve:

- financial problems
- manpower
- technical
- legal problems

→ Reflect on how to obtain adequate effectiveness in the process of technology transfer from detector R&D to society applications

Human factor

Perceived perspective for job/career opportunities for detector experts

	YES (%)	NO (%)
In research field	39	61
In industry	66	34
In tertiary sector, requiring advanced software development skills	80	20

Expertise acquired by young researchers @ labs/institutes is GREAT !!!!!

BUT our current career model, to keep the researchers in house, doesn't work very well !!!

R&D activities are not considered as rewarding as physics analysis and they do not grant equal career opportunities

The success and future of our field depend on our ability and strength:

- to attract the most talented researchers
- to recognize individual achievements especially within large collaborations
- to provide adequate career opportunities
- → Instrumentation activities must be recognized as a fundamental research
- → Career opportunities for detector experts must be greatly strengthened

F. FORTI -> at recruiting time need to change the attitude: "this person only knows about detectors, should we really hire him/her?"

Education & training

PhD/postdocs often lack basic knowledge because University courses are often insufficiently oriented towards technical aspects

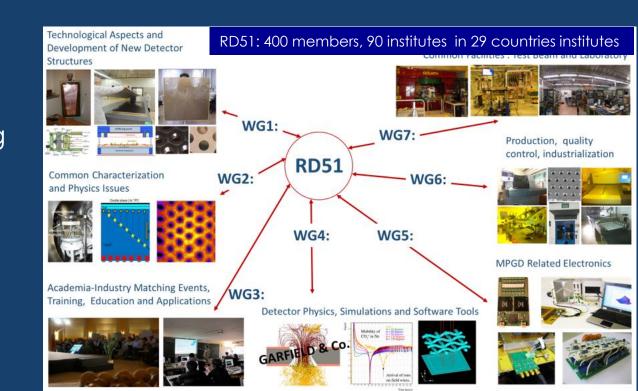
@ University

- → Need to enhance basic knowledge required for applied physics activities
- →Need to recognized instrumentation activities as granting valuable PhD thesis

after University

→Strength the specialized training platforms in large lab/institutes

(EDIT school on Detectors: https://indico.desy.de/indico/event/22513/)


Granada take away messages

- There are many promising developments → Fast detectors, precise in time and space, ideally linked with energy determination, exploiting in-situ artificial intelligence → The future is going towards multi-functional detectors !!!
- Blue sky R&D can provide breakthrough technologies but it's a long process > Need strong support
- We can & it is necessary to bring fundamental research closer to the needs of the whole of society \rightarrow Review and strength our tech transfer model
- ln the μ -electronics realm \rightarrow Urgency for an international coordination & adequate resources for shared programs
- R&D coordination → Need to enhance collaboration and exchange of information between physics fields and technology specialisations
- Instrumentation activities need to be recognized as a fundamental research
- Career opportunities for detector physicists must be greatly strengthened

BACKUP

example RD51: µpattern gaseous detectors

- Gather worldwide expertise in all aspects and provide visible framework for institutions
- Inherent large network for exchange of information
- Limit duplication and share work per areas
- Can include non HEP developments
- Develop, provide access & distribute common tools → Most effective framework to share resources with small institutes/users
- Gives the possibility of common orders
- Define and adopt common test protocols, documentation, data bases
- Active environment for training and creating new expertise
- Provide door to industry relations

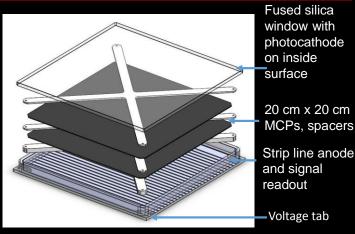
FTEs doing R&Ds in the major detectors categories

Detectors categories	% of FTEs	
Vertex detectors	15	1000
Trackers	23	~40%
Detectors for Particle Identification	14	
Calorimetry	15	
Timing detectors	12	
Highly specialized instrumentation for Neutrino searches	7	
Highly specialized instrumentation for Astroparticle	7	
Other**	5	

^{**} gamma spectrometry, neutron detection, dosimeters, beam monitors, luminometers, gravitational waves.......

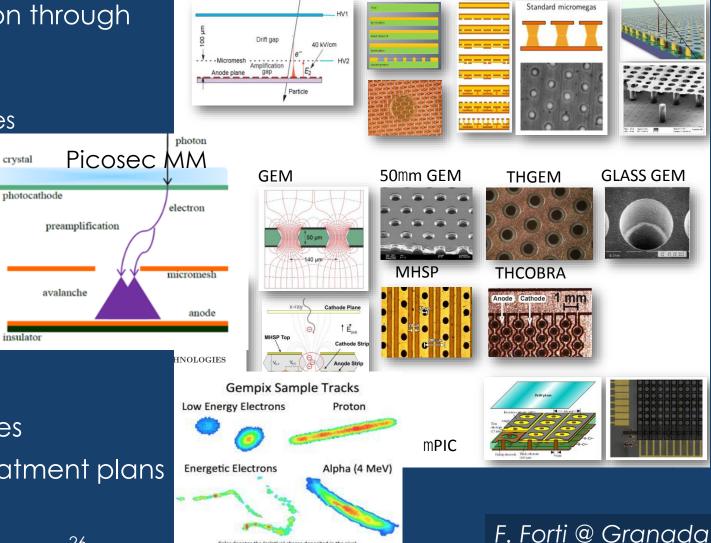
Photon detectors

- Photon detection is key to many detection systems in HEP and in "invisible"
- SiPM, PMT, APD, LAPPD, Vacuum SiPM Tube
- Challenges:
 - Quantum efficiency > 35%
 - Spectral response
 - Radiopurity
 - Speed
 - Noise



Large Area Picosec Photo Detectors

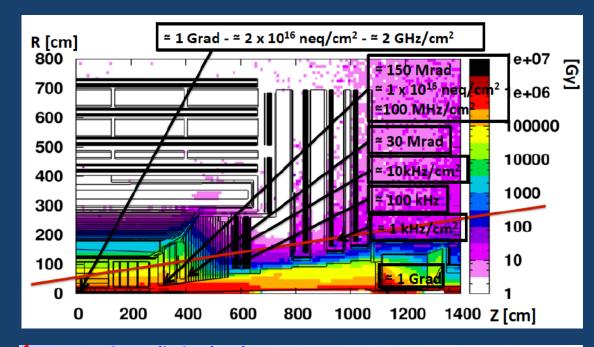
 Use Atomic Layer Deposition (ALD) Coating to Convert Glass Capillary Arrays into MCPs


LAPPD

Micro Pattern Gas Detectors

Micromegas

- Very active field. Good coordination through RD51
- Future directions:
 - Resistive materials and architectures
 - Fast and precise timing
 - New materials and technologies
 - Hybrid detectors
- Challenges
 - Granularity
 - Time resolution
 - Large area, Large volume
- Reliability of industrial production still to be optimized for large surfaces
- Many applications, for instance treatment plans


Bulk

Micro bulk

InGrid

Radiation

- Radiation resistance considerations are omni-present in detectors
- Huge progress in identifying materials and design techniques
- Next accelerators might increase the radiation level by more than a factor 10-100
 - FCC
 - Muon collider
- Solutions are not in hand today

1. Increasing radiation levels

- Semiconductor detectors will be exposed to hadron fluences equivalent to more than 10¹⁶ n_{eq}/cm² (HL-LHC) and more than 7x10¹⁷ n_{eq}/cm² (FCC)
 - → detectors used now at LHC cannot operate after such irradiation

New requirement and new detector technologies

New requirements or opportunities lead to new technologies (e.g. HV-CMOS, LGAD,...)
 which need to be evaluated and optimized in terms of radiation hardness

G.Casse and M.Moll, RD50 Status Report,