

Outline

General **motivations** and **visions** of particle-astroparticle-nuclear physics

Concrete examples:

New physics discoveries (dark matter)

- How to discover new particles
- Complementarity of particle and astroparticle physics experiments
 - Weakly Interacting Massive Particles
 - The case of axion(-like) particles

Handling large, heterogeneous amounts of data

- LHC: direct and indirect searches for new physics
- Multimessenger astronomy (nuclear astrophysics)

Examples of ongoing synergistics initiatives

Much inspiration from EPPSU Granada talks, but also some (necessary) personal selection of topics

Conclusions and path forward

Visions: APPEC, ECFA, NuPECC

Astroparticle (APPEC)

Particle (ECFA) Nuclear physics (NuPECC)

Astroparticle, particle and nuclear physics in Europe have **strategies and plans** that **recognize the importance of synergies** between the different fields

Visions: APPEC, ECFA, NuPECC

Some of the **common scientific goals** in the strategy documents:

More synergies: "foundations" for common challenges

this session

Example of a physics synergy: new physics (of Dark Matter)

A chart of measurements (and discoveries)

A chart of measurements (and discoveries)

A chart of searches (and discoveries)

Discovery of the Higgs boson:

guided by clues from the Standard Model of particle physics

Where to go next? Uncharted territories

Expected and unexpected particle discoveries

The Economist

Expected and unexpected particle discoveries

Expected and unexpected particle discoveries

Guidance from astrophysics: dark matter

Empirical **problem** in the Standard Model of Particle Physics: no explanation for **Dark Matter**

One of the possible **solutions**, guided by **relic density**: invisible **Dark Matter particles** at the **TeV scale** (Weakly Interacting Massive Particles)

68 %

Guidance from astrophysics: dark matter

Empirical **problem** in the Standard Model of Particle Physics: no explanation for **Dark Matter**

One of the possible **solutions**, guided by **relic density**:

invisible **Dark Matter particles** at the **TeV scale**

(Weakly Interacting Massive Particles)

Complementary experimental strategies & inputs

27 %

Ordinary Matter

Collider, direct and indirect detection

Big Question at Granada symposium:

How will Direct and Indirect DM Detection experiments inform/guide accelerator searches and vice-versa?

- Why we need complementarity:
 - DD/ID can discover DM with cosmological origin

Collider, direct and indirect detection

Big Question at Granada symposium:

How will Direct and Indirect DM Detection experiments inform/guide accelerator searches and vice-versa?

- Why we need complementarity:
 - DD/ID can discover DM with cosmological origin
 - Colliders can produce DM and probe the dark interaction

See I. Pellmann's

talk @ EPSHEP'19

See M. Genest's

talk @ EPSHEP'19

A simple example: scalar mediator between SM and DM

 Collider constraints on simple models of DM can be shown in terms of DM-nucleon interactions

 $\sigma_{\rm SI} \simeq 6.9 \times 10^{-43}~{\rm cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{1}\right)^2 \left(\frac{125\,{\rm GeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1\,{\rm GeV}}\right)^2$

A simple example: scalar mediator between SM and DM

 Collider constraints on simple models of DM can be shown in terms of DM-nucleon interactions

 $\sigma_{\rm SI} \simeq 6.9 \times 10^{-43} \text{ cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{1}\right)^2 \left(\frac{125 \text{ GeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \text{ GeV}}\right)^2$

LHC Dark Matter Working Group, arXiv:1603.04156 Preliminary, Granada May 2019 10⁻³⁸ $\sigma_{\rm SI}$ (χ -nucleon) [cm²] 10^{-39} 10^{-40} PRL 117 (2016) 121303 DarkSide-50 10^{-41} PRL 121 (2018) 081307 **CRESST III** 10^{-42} Argo-3000 (proj.) DarkSide-50 10^{-43} DARWIN-200 (proj.) 10^{-44} LHC, 14 TeV, 3 ab⁻¹ 10^{-45} JHC, 27 TeV, 15 ab⁻¹ ttbar+MET 10^{-46} FCC-hh, 100 TeV, 1 ab⁻¹ FCC-hh, 100 TeV, 1 ab FCC-hh, 100 TeV, 30 ab⁻¹ of PRD 93 (2016) 054030 FCC-hh, 100 TeV, V/jet+MET **Keep in mind:** these plots are only valid for the couplings specified, Darkside-Argo(proj 10⁻⁴⁹ in the **limited space of a** Scalar model, Dirac DM benchmark model! $g_{DM} = 1, g_{SM,f} = 1$ Collider limits at 95% CL, direct detection limits at 90% CL 10^{-51} European Strategy 10 Caterina Doglioni - 2019/07/13 - John EPS-ECFA session

A simple example: scalar mediator between SM and DM

Synergy: complementary reach for future colliders and direct detection

- Collider discovery of invisible particle needs confirmation of cosmological origin from DD/ID
- DD/ID discovery needs collider understanding of nature of interaction
- A future collider program
 that increases sensitivity to
 invisible particles coherently
 with DD/ID serves these
 purposes

See **V. Dutta**'s talk @ EPSHEP'19

What if DM isn't a WIMP?

See C. Vallee's talk in this session

Axions/Axion-Like Particles (ALPs):

example of new particle with inter-field connections

Figures taken From I. Irastorza's talk @ EPSHEP '19

also using nuclear physics experiments (EDM rings)

Synergies beneficial for many smaller experiments: from joint expertise and common discussion platforms

Synergies in dark matter searches

Huge progress planned for direct and indirect detection for WIMP DM

Future colliders and experiments can follow:

essential complementarity between

cosmological origin astrophysics

nature of the DM-SM interaction particle physics

Similarly, **combination of complementary experiments + theory** needed to identify nature of DM in case of **non-WIMP DM**

How to strengthen common foundations?

Many common challenges, e.g.

particle detectors and instrumentation,

strategies to handle large amounts of data

Example of a common challenge: analysis of large, complex datasets

Enabling discoveries in particle physics

- Many different theories can explain particle physics shortcomings
 - None of these theories is yet favored by data
 - Very different signatures in the detector
 - Some signals buried in high-rate backgrounds

Enabling discoveries in particle physics

- Many different theories can explain particle physics shortcomings
 - None of these theories is yet favored by data
 - Very different signatures in the detector
 - Some signals buried in high-rate backgrounds
 - Some signals very unusual but rare

Enabling discoveries in particle physics

- Many different theories can explain particle physics shortcomings
 - None of these theories is yet favored by data
 - Very different signatures in the detector

A key challenge: within millions p-p collisions/second, select/analyze the interesting ones in real time

See **G. Stewart**'s talk in this session

LHC data volumes after selection of "interesting" data

The advent of Multimessenger astronomy

- Revolutionary combination of information on the cosmos
- Simultaneous detection of astrophysics events
 - "highly heterogeneous, high-volume, high-velocity datasets" arXiv:180

arXiv:1807.04780.pdf

See **E. Bernardini**'s talk @ EPSHEP'19

27

The advent of Multimessenger astronomy

- Revolutionary combination of information on the cosmos
- Smultaneous detection of astrophysics events
 - "highly heterogeneous, high-volume, high-velocity datasets" arXiv:1807.04780.pdf

A key challenge: fast follow-up of interesting events with higher resolution instruments

NSF/LIGO/Sonoma State University/A. Simonnet

Light from neutron star mergers can shed light on cosmic origin of heavy elements

Extremely large datasets, in different contexts

C. Fitzpatrick, **LHCb**

E. Bellm, Large Synoptic Survey Telescope

The LHC and modern astrophysics surveys are data firehoses

Can benefit from common techniques and tools for data taking & data reduction

(e.g. on-detector / real-time data analysis, machine learning) with applications beyond physics research

Synergy initiatives and outlook

A constellation of activities and initiatives

Conclusions and outlook

- Answering fundamental physics questions requires **concerted work** from **particle, astroparticle and nuclear physics**
 - Examples: dark matter (in this talk), neutrino physics...
 - Common challenges in terms of foundations (detector, computing...)
- A number of synergistic initiatives exist, many hosted by CERN
 - What is the best way forward? Discussion started at Granada meeting
- More discussion at the APPEC-ECFA-NuPECC meeting in Orsay this October

