

MyCERN

Expert System

Content
Executive summary ... 3

Introduction ... 4

Architecture ... 5

Search engine .. 5

Natural Language Processing .. 6

Ontologies ... 7

Recommender system ... 9

Rules .. 11

Commercial systems .. 13

Conclusion ... 15

Is it possible to build an expert system from the ground up?... 15

Are there any open source alternatives out there? .. 15

Are there any commercial solutions? .. 15

Executive summary
An expert system is an indispensable component for MyCERN as it can provide:

1. Intelligent search within all the procedures available at CERN.

2. Description of the rules behind the procedures in a language that is understandable by the system.

3. Suggestions about the most suitable procedures for a certain user and personalized information

about them.

The purpose of this document is to evaluate the feasibility of such a system providing all this functionality. It

will analyze the different elements of an expert system and the available libraries available in the open source

/ commercial landscapes.

Finally the document will try to answer to the following questions:

1. Is it possible to build an expert system from the ground up?

2. Are there any open source alternatives out there?

3. Are there any commercial solutions?

Introduction
In the context of computer science, an expert system is a computer system that emulates the decision-making

ability of a human expert. Expert systems are examples of knowledge-based systems and traditionally they are

composed of two sub-systems: the knowledge base and the inference engine.

The main goal of a knowledge-based system is to make the critical information required for the system to work

explicit rather than implicit. In traditional computer programming, all the logic is embedded in the code,

making it only understandable by IT specialist. In knowledge-based systems the goal is to specify all these rules

in a format that is intuitive and easily understood by business experts.

Regarding the MyCERN project, there is a number of key aspects where an expert system can be valuable:

 Search engine: Provide useful and precise information in response to user input.

 Recommender system: Provide suggestions to the users, tailored to their needs.

 Rules: Understanding of CERN procedures and their rules.

Only the rules part is really mandatory as it provides the basic foundations for the MyCERN’s knowledge base

An intelligent search engine or a recommender system are “nice to have” features that will make the Expert

System even more intelligent and valuable but are absolutely not required.

Architecture
In the context of the proposed architecture for MyCERN, the expert system can be decomposed into the three

different modules previously discussed:

Search engine

...

EDH Service portal EDMS Push notifications

...

C
LI

EN
TS

M
YC

ER
N

G
A

TE
W

A
Y

SE
R

V
IC

ES

EX
TE

R
N

A
L

SY
ST

EM
S

Preferences
Recommender system

Rule engine

U
I

Search engine
Traditionally, search engines are based on keywords, but it’s been proven that keyword search alone is not

enough. A search engine needs to understand how the data is related and that’s the main reason why Semantic

Search has appeared.

A definition given by Wikipedia and Google is the following:

Semantic search seeks to improve search accuracy by understanding searcher intent and

the contextual meaning of terms as they appear in the searchable dataspace, whether on

the Web or within a closed system, to generate more relevant results.

There are two interesting parts in Semantic Search Engines:

EX
P

ER
T SYSTEM

 Natural Language Processing (NLP) is a field of computer science, artificial intelligence and

computational linguistics concerned with the interactions between computers and human languages.

 Ontologies. In computer science and information science, an ontology is a formal naming and

definition of the types, properties, and interrelationships of the entities that fundamentally exists for

a particular domain of discourse.

Natural Language Processing
The main goal of NLP is to extract structured information from human written text. It can take a user written

query an extract a semantic model of the keywords or it can parse a text file (like the ones in the admin e-

guide) and fetch important information.

The following example shows where NLP can be helpful for MyCERN. Starting with the following user entered

input:

How can I get green plates?

An NLP based solution will tokenize the sentence providing useful information for the search engine to match

the query, as an example from the previous query:

Position Token Lemma Part of Speech Relation to parent

0 How how Wh-adverb advmod

1 can can Modal aux

2 I i Personal pronoun nsubj

3 get get Verb, non-3rd person singular present

4 green green Adjective amod

5 plates plate Noun, plural dobj

6 ? ? . punct

But I can also provide a graph with the relations between the different words:

There are a number of libraries capable of doing NLP:

1. Apache OpenNLP. It is a machine learning based toolkit for the processing of natural language text. It

supports all the basic aspects of NLP like tokenization, sentence segmentation … used to build more

advanced text processing services.

2. LingPipe. It is a toolkit for processing text using computational linguistics. It provides the same

functionality as OpenNLP but it goes further and has some advance functionality like clustering,

database text mining, …

 LingPipe OpenNLP

License

AGPL: free
Developer: $450/server
Startup: Starts at $9.500/year/site
Enterprise server: $40.000/server

Apache 2.0

Language Java Java

Scope High-level (Off-the-shelf algorithms) Low-level tools (Lego bricks)

URL http://alias-i.com/lingpipe/ https://opennlp.apache.org/

Ontologies
The main goal is to provide a representation of the world as we know it, not only the objects but the

relationships between them. In the context of MyCERN, an ontology is useful if it can describe the different

procedures at CERN and the relations between those procedures and the real-world entities they manage

(green plates, French cards …).

The following image shows a small example of an ontology dealing with vehicle related procedures:

Thing

Vehicle

CarBike

Vehicle

CarBike Green platesGreen plates

Procedure

Car rental Bike rental

Procedure

Car rental Bike rentalGreen plates

Procedure

Car rental Bike rental

Vehicle

CarBike Green plates

Procedure

Car rental Bike rental

Is a Is a

Instance of Instance of

Instance of

Instance of

Instance of

Has a procedure

Has a procedure

Has a procedure

Based on the information coming from the NLP analysis plus the information contained in the ontology it is

possible to provide useful and precise search results.

There are lots of tools with the purpose of building/visualizing ontologies:

 Protégé. It is a free, open-source ontology editor and framework for building intelligent systems.

http://alias-i.com/lingpipe/
https://opennlp.apache.org/

 NeOn Toolkit. The NeOn toolkit is a state-of-the-art, open source multi-platform ontology engineering

environment, which provides comprehensive support for the ontology engineering life-cycle.

 Protégé NeOn Toolkit

License BSD Eclipse public license

Scope Graphical interface to define ontologies

URL http://protege.stanford.edu/ http://neon-toolkit.org/

The following image shows the ontology editor provided by Protégé:

The extra step needed is a language able to query the ontology based on the tokens provided by the NLP

analysis (as there is SQL for relational databases). In the case of ontologies, this language already exists and

it’s called SPARQL.

There is a library called Apache Jena that deals with all the internals of saving, writing and querying ontologies.

 Apache Jena

License Apache 2.0

Language Java

Scope Framework for building Semantic Web applications dealing with ontologies and SPARQL

URL https://jena.apache.org/

The following sequence diagram shows how the search engine will work and its relations with other MyCERN

components:

http://protege.stanford.edu/
http://neon-toolkit.org/
https://jena.apache.org/

Client Search engine NLP Ontology

Client search

Get tokens

Tokens

Get procedures

Procedures

Procedures

Expert system

Client search

Procedures

1. The client enters some text into the search box.

2. The expert system forwards the call to the search engine.

3. The search engine calls the NLP module providing the user entered text and receives a list of tokens.

4. The search engine asks the ontology module to perform a SPARQL query based on the tokens in order

to find a list of related procedures.

5. The search engine returns the list of procedures to the expert system.

6. The expert system returns the list of procedures to the client.

Recommender system
Recommender systems are a subclass of information filtering systems that seek to predict the “rating” or

“preference” that a user would give to an item. One of the ways to produce a list of recommendations is to

use collaborative filtering that approaches building a model from a user’s past behavior (in the case of MyCERN

it would be the procedures already initiated by the user or other users with a similar profile).

Building a recommender system for the procedures at CERN can be reduced to a problem of

classification/clustering based on historical information regarding those procedures:

 Who created the procedure and when?

 Personal data of the user (age, nationality, address …).

The idea behind is that the system is able to correlate all the information and find patterns/clusters that are

not that obvious without a deep analysis, this is the typical problem faced in machine learning and data mining.

As an example, for the procedures to rent a car or rent a bike, one can try to correlate the age of the user and

the distance from his address to CERN, yielding the following chart as an example:

Distance to CERN (meters)

A
ge

 (
ye

ar
s)

2000
4000

6000
8000

10000

12000

14000

16000

10

20

30

40

50

60
Car rental

Bike rental

Car rental

Bike rental

Each cross will indicate that a user created one procedure of that type. The squares are the representation of

the clusters that the algorithm might find (in this case, it’s an example of density based clustering), meaning

that:

 If the user is between 18 and 25 years old and lives between 1.500m and 4.000m it will be a good

candidate to recommend the bike rental procedure.

 If the user is between 30 and 45 years old and lives between 9.000m and 13.000m the car rental

procedure will be a good candidate.

This kind of analysis is not limited to just two axes but it could include as well other variables like the nationality

(some nationalities are more used to commuting to work by bike), having or not a driving license …

There are a number of existing libraries that can handle this kind of analysis:

 TensorFlow. It is an artificial intelligence/numerical computing library from Google that has been

recently released. It provides all the low-level tools to implement a system like the one described

before.

 Scikit-learn. It is a kit that provides simple and efficient tools for data mining and data analysis. By

default, it already implements algorithms to do classification and clustering.

 TensorFlow Scikit-learn

License
Apache 2.0

BSD

Language Python Python

Scope Low-level tools (Lego bricks) High-level (Off-the-shelf algorithms)

The following sequence diagram shows how the recommender system will work and its relations with other

MyCERN systems:

Client Recommender system Foundation EDH

Connection

Client data

Get historical data

Historical data

Procedures

Clustering analysis

Expert system

Find clusters for client

Procedures

Get client data

Get procedures

1. In the background, the recommender system asks to EDH or any other external systems for all the

relevant historical data about the procedures initiated at CERN (when, by whom …).

2. Based on that information the system performs the analysis about the different clusters (as stated

before, a cluster is just a set of attributes of the client that will make him a good candidate for a

procedure).

3. Later on, when a user connects to MyCERN, the expert system asks Foundation or any other external

systems for the relevant information about the connected client.

4. The expert system sends the data about the client to the recommender system and asks for a list of

procedures.

5. Based on the data about the client and the clustering analysis, the recommender system finds the

relevant procedures and returns them.

6. The expert system returns the list of procedures.

Rules
Finally, there is the need to be able to describe the procedures in a language that the computer can understand

so he can reason about them. In the end, we want the system to be able to answer to questions like:

Is this particular procedure applicable to this user?

In order to answer this question a mechanism to specify the rules behind the procedures is needed. This is the

goal of a rule engine, it is all about providing an alternative computational model to the traditional imperative

model, which consists of commands in sequence with conditionals and loops, a rules engine is based on a

Production Rule System.

There are lots of rules engines but we can enumerate the following:

 Drools. Drools is a business rule management system (BRMS) with a forward and backward chaining

inference based rules engine, more correctly known as a production rule system, using an enhanced

implementation of the Rete algorithm.

 Oracle Business Rules. It is a high performance lightweight business rules product that addresses the

requirements for agility, business control, and transparency.

 IBM Operational Decision Manager. It is a full-featured platform for capturing, automating and

governing frequent, repeatable business decisions.

The following example contains the rules needed to know if a user can apply for a French card, the example

uses the Drools rules language:

package ch.cern.mycern;

rule "Resident in France"

 salience 5

 activation-group "French card"

 when

 who: Person(residenceCountry != "FRANCE")

 then

 who.setEligible(false);

 who.setEligibleReason("You should get an EF card");

 end

rule "French nationality"

 salience 4

 activation-group "French card"

 when

 who: Person(nationality == "FRANCE")

 then

 who.setEligible(false);

 who.setEligibleReason("French people don't get French cards");

 end

rule "Titre de sejour prefectoral or resident permanent"

 salience 3

 activation-group "French card"

 when

 who: Person(titreSejour == true || titreResident == true)

 then

 who.setEligible(false);

 who.setEligibleReason("You are the holder of a tritre de sejour prefectoral or a

titre de resident permanent");

 end

rule "Status at CERN"

 salience 2

 activation-group "French card"

 when

 who: Person(status == "EXTN" || status == "SUMM" || status == "APPR")

 then

 who.setEligible(false);

 who.setEligibleReason("Your status at CERN doesn't allow you to have a French

card");

 end

rule "Eligible"

 salience 1

 activation-group "French card"

 when

 who: Person()

 then

 who.setEligible(true);

 end

A rule engine can be useful in several ways:

 Enrich the list of procedures by giving more information about them, like the next steps or why a

particular procedure is not applicable to the user.

 Provide a final filter/rank for the results returned by the search engine/recommender system. Maybe

a procedure that is suggested is not applicable to a certain user due to his current situation.

Client Search engine

Client search

Procedures

Expert system

Client search

Procedures

Rule engine

Filter procedures

Procedures

Commercial systems
There is a commercial solution that will fulfill part of the requirements for MyCERN called cogito

(http://www.expertsystem.com/products/cogito/, that as stated in their website is used by some big

companies like Microsoft, Vodafone, ING Direct …

Cogito is a system that:

 It’s based on a representation of knowledge called the Cogito Knowledge Graph that is something

pretty similar to the ontologies discussed previously.

 It uses NLP to understand the words in the same way that people do by using a semantic analysis that

is probably quite similar to the one described in this document.

 It is able to learn from human experts and written communications to acquire new knowledge, this is

something similar to the clustering analysis.

It will provide all the functionality required by the search engine and the recommender system out of the box.

There are a few demos that can be tested online http://www.expertsystem.com/discover-cogito-demo/ to

really understand why this commercial system can do. As an example using the first paragraphs from the

admin e-guide on green plates, cogito is able to discover the following:

http://www.expertsystem.com/products/cogito/
http://www.expertsystem.com/discover-cogito-demo/

So, apart from serving as a search engine or a recommender system, cogito can be used to analyze all the

documentation available online in the service portal or the admin e-guide in order to provide valuable

information about what is included inside without requiring a business expert to do so.

Conclusion

Is it possible to build an expert system from the ground up?
Yes, this document has listed several open source libraries that can be used to build such a system:

1. By using Semantic Search, it is possible to provide useful results that answer accurately to the

questions asked by users.

2. The Recommender System enables the system to identify hidden patterns in regards to procedures

that makes it possible to help the user discover those that make more sense to them.

3. Finally, the rule engine can assist in a final step to verify which procedures can be really applied to a

certain user.

The following table will show the preferred libraries to be used for each one of the modules of an expert

system:

 Option Reason

Search engine

LingPipe
It provides more functionality out-of-the box,
although the license can be a deal breaker

Protégé
It is one of the most well-known and mature
systems

Apache Jena

Recommender system Scikit-learn
It provides a lot of functionality out of the box and
it’s really simple to use (doesn’t require deep
technical understanding)

Rules Drools
It’s already used inside CERN so there is a lot of
know-how about the tool

Are there any open source alternatives out there?
In the open source landscape, it is possible to find all the required elements to build a system, but so far a sole

system that will answer to all the needs of MyCERN has not been found.

Are there any commercial solutions?
Yes, there is a platform called cogito that provides solutions to the problems of semantic search/recommender

system that should definitely be explored before building an in-house solution.

	Executive summary
	Introduction
	Architecture
	Search engine
	Natural Language Processing
	Ontologies

	Recommender system
	Rules
	Commercial systems
	Conclusion
	Is it possible to build an expert system from the ground up?
	Are there any open source alternatives out there?
	Are there any commercial solutions?

