

The Impact of Incorporating Shell corrections to Energy Loss in Silicon

<u>Fuyue Wang^{1,2}</u>, Dong Su³, Ben Nachman², Maurice Garcia-Sciveres², Qi Zeng³

1. Tsinghua University 2. Lawrence Berkeley National Laboratory 3. SLAC National Accelerator Laboratory

https://arxiv.org/abs/1711.05465, https://github.com/LBNLPixelProjects

Motivation	Model comparison metrics
 Requirements on the material budget and radiation hardness are pushing sensors to become thinner. Landau-Vavilov distribution describes the energy fluctuations in thick sensors quite well, but not for thin sensors. 	 EMstandard: most commonly used Geant4 physics model at the LHC. This model results in Landau-Vavilov-like distributions and does not include shell electron effects. The Photo Absorption Lonization (DAD) models a more detailed.
• For thin sensors, the Bichsel model is more complete and has	• The Photo Absorption Ionization (PAI) model: a more detailed energy loss model in Geant4 In good agreement with the

- been shown to reproduce measured energy losses.
- We implemented the Bichsel model into a standalone Geant4 package called Allpix and compare the result with other models.

What is Bichsel model?

• Bichsel straggling function accounts for shell-effects of silicon atom and has been shown to reproduce measured energy losses.

• Fluctuations in the energy loss and mainly due to 2 sources: A. The number of collisions: Poisson distribution

 $\Pr(n) = \frac{(x/\lambda)^n}{\cdot} e^{-x/\lambda}$ n λ : Mean free path, calculated from the collision cross section $\sigma(E)$ $\lambda^{-1} = N \ / \ dE\sigma(E)$

experiment data on energy loss for moderately thin sensors. • Energy deposition for a single layer of a silicon detector with various thickness.

energy loss model in Geant4. In good agreement with the

B. Energy loss distribution after n collisions:

$$\sigma(\Delta)^{*n} = \int_0^\Delta \sigma(E) \sigma^{*(n-1)} (\Delta - E) dE$$

• The full straggling function of Bichsel model:

 $f(\Delta, x) = \sum_{n=0}^{\infty} \frac{(x/\lambda)^n e^{-x/\lambda}}{n!} \sigma(\Delta)^{*n}$

- This equation does not admit a closed-form analytic solution, but numerical calculations are provided.
- PAI and Bichsel models are similar because both of these two models include shell corrections
- Below 10 um, large differences between 3 models. The shell effects are very pronounced in the Bichsel model.

m

Position residual of 3 models

Time comparison

• Variations in the energy loss distributions lead to differences in the reconstructed hit position. • Bichsel and PAI agree well with each other, but have a larger discrepancy with EMstandard.

Thickness = 50 μ m, η l = 1 EMStandard (5.0 \pm 0.0 μ m)

0.08₁

Thicknes	ss = 10 μm, Ir	l = 2
	EMStandard ($(4.5 \pm 0.0 \ \mu m)$

Thickness = 200 μ m, lηl = 2	
EMStandard (7.4 \pm 0.0 μ m	า)

•	PAI is not used in practice due to its long simulation time.
	$\overset{\circ}{=}$ 5 Thickness = 150 µm

This work was supported by the U.S. Department of Energy, Office of Science under contract DE-AC02-05CH11231 and by the China Scholarship Council.