
Ultimate position resolution of pixel clusters 
with binary readout for particle tracking 

Fuyue Wang1,2, Benjamin Nachman2, and Maurice Garcia-Sciveres2  
1. Tsinghua University    2. Lawrence Berkeley National Laboratory 

https://arxiv.org/abs/1711.00590

¥ The resolution is best when Pr(Most Probable Shape) is small. 
¥                               pixel sensor 

¥ The resolution envelopes for different     are always below 90%     
d                across the entire      range

Resolution and the variety of clusters
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Black arrow: When the particle enters to the left of the black 
arrow the cluster length will most likely be 1 pixel, while when 
the particle enters to the right the length will most likely be two. 

Red  arrow:  no  matter  where 
along a pixel the particle enters 
the sensor, the MIP will always 
traverse two pixels.
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A. The cluster distributions  that the hit belongs to.  
B. Approximate incidence angles of the track producing the hit. 

¥ Tracks near the edge of the pixel will produce 2-pixel clusters 
instead of 1-pixel clusters.  

¥ The RMS of the actual distribution is                            .!

Why is                a worst case upper limit?
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¥ Histogram the true entrance point independently for each cluster 
shape and compute the mean and RMS of the distribution.  

Shape classification and RMS calculation
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¥ There is significant literature on the position resolution obtained 
from interpolation of charge measurements. 

¥ A comprehensive study of the resolution obtainable with binary 
readout is lacking and commonly assumed to be                  , 
which is the worst case upper limit. 

¥ We study the best achievable resolution for minimum ionizing 
particles in binary readout pixels using simulation

Motivation

σ 2 min(x) ! min(dx)2 = Pr(s) xtrue − xtrue | s( )2
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∑
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¥ Resolution was calculated for the peaks and valleys of the Pr(Most Probabl Length).  

¥ Large pixel: peak depends little on the size and     ; valley depends strongly on the size and  
¥ Small pixel: both the peak and valley depend strongly on the size and     , and the resolution can even exceed 
¥ Resolution in the x (non-zero     incidence) benefits significantly from the longer cluster-size as      increases.

Position Resolution in the x and y direction
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¥ Bichsel straggling function accounts for shell-effects of silicon 
atom and has been shown to reproduce measured energy losses. 

¥ Fluctuations in the energy loss and mainly due to 2 sources: 
A.The number of collisions: Poisson distribution 

                                         
B.Energy loss distribution after n collisions:  

¥ The full straggling function of Bichsel model: 

¥ This equation does not admit a closed-form analytic solution, but 
numerical calculations are provided. 

¥ PAI is not used in practice due to 
its long simulation time.  

¥ Our implementation of Bichsel: 5 
times faster than PAI

¥ EMstandard: most commonly used Geant4 physics model at the 
LHC. This model results in Landau-Vavilov-like distributions 
and does not include shell electron effects. 

¥ The Photo Absorption Ionization (PAI) model: a more detailed 
energy loss model in Geant4. In good agreement with the 
 experiment data on energy loss for moderately thin sensors. 

¥ Energy deposition for a single layer of a silicon detector with 
various thickness. 

¥ PAI and Bichsel models are similar because both of these two 
models include shell corrections  

¥ Below 10 um, large differences between 3 models. The shell 
effects are very pronounced in the Bichsel model.!

Model comparison metrics

What is Bichsel model?

¥ Requirements on the material budget and radiation hardness are 
pushing sensors to become thinner.  

¥ Landau-Vavilov distribution describes the energy fluctuations in 
thick sensors quite well, but not for thin sensors. 

¥ For thin sensors, the Bichsel model is more complete and has 
been shown to reproduce measured energy losses. 

¥ We implemented the Bichsel model into a standalone Geant4 
package called Allpix and compare the result with other models.

Motivation

   : Mean free path, calculated from 
the collision cross section ! (E )
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¥ Variations in the energy loss distributions lead to differences  in the reconstructed hit position. 

¥ Bichsel and PAI agree well with each other, but have a larger discrepancy with  EMstandard. !

¥

Position residual of 3 models
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Time comparison
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