

ASSEMBLY AND ELECTRICAL TESTS OF THE FIRST FULL-SIZE FORWARD MODULE FOR THE ATLAS ITK STRIP DETECTOR

Carlos García Argos, on behalf of the ATLAS ITk Strip Collaboration (Albert-Ludwigs-Universität Freiburg, Germany)

The ATLAS ITk Strip Detector

- ► All-silicon detector with around 70 million read-out strips.
- ► Modular design with modules assembled in larger structures: staves and petals.
 - ► Four barrel layers and six end-cap discs per side.
 - Integrated cooling and electronics.
- ▶ Modules are made from one silicon sensor and one or more hybrid circuits.
- ▶ Read-out chips glued onto the hybrids and wire bonded for electrical connections.
- ► Forward region uses "Stereo Annulus" shaped sensors and modules.
 - ▶ Different number of strips leads to different number of read-out chips.
 - Changing strip pitch and length for each segment.
 - ► Here, we focus on **Ring 0**.

- ▶ **UV-cured glue** for hybrid-ASIC attachment.
- ► Glue dispensing robot.
- Special tooling for precise positioning and glue height control.
- Wire-bonding.
- Electrical testing.

Sensor Testing

Bare sensor measured on probe station: I/V and C/V curves.

593 mm

modules

1400 mm

- C/V used to determine full depletion voltage: $\approx 300 \text{ V}$.
- ▶ I/V of bare sensor, after gluing hybrids and after wire-bonding.
 - Used to determine whether there is damage to the sensor.
- Slightly worsening of the I/V after gluing and wire-bonding.
 - Signs of potential mechanical stress on the sensor.
 - Sensitivity to humidity is another source of increased current.

Module Building

Final Module Assembly

- Sensor held on precisely machined tool with vacuum.
- **Epoxy** glue cured for 10 hours. Hybrid glued on sensor active area.
- ► Electrical connections: **four row** wire-bonding of front-end channels.
- ► **Noise** increases with strip length and decreases with hybrid-sensor glue thickness.

Addition of power board for

Initial Electrical Tests

- Characterisation by: Input Noise (Equivalent Noise Charge, ENC) and Noise Occupancy.
- ► Tests: **Response Curve** and Noise Occupancy Scan.
- With changing sensor bias voltage.
- Noise behaves as expected with bias and strip length.

Electrical Tests With Power Board

- Slight noise increase in areas underneath the power board.
- ► Small **B-field leakage** measured next to the power board.
- ▶ We expect some noise reduction by **improving the shielding**.

With power board

Conclusions

- ▶ The electrical tests performed so far on the first prototype end-cap sensors show good performance.
- ▶ Module building procedure is under control: precision mounting of chips, gluing to sensor and wire-bonding.
- ▶ The module noise performance is consistent with the sensor characteristics.
- Addition of a power board on top of the sensor introduces some extra noise which we expect to be able to control by improving the shielding.