A Versatile Analysis of Surface and Bulk Radiation Damage Effects

F. Moscatellia,b, A. Morozzib,c, D. Passerib,c, S. Mattiazzod, G.-F. Dalla Bettae,f, T. Bergauerg, M. Dragicevicg, A. Konigg and G. M. Bileib

a CNR-IOM of Perugia, via Pascoli 1, 06123, Perugia, Italy
b INFN of Perugia, via Pascoli 1, 06123, Perugia, Italy
c Department of Engineering – University of Perugia, via G. Duranti 93, 06125, Perugia, Italy
d Dipartimento di Fisica e Astronomia e INFN di Padova, via Marzolo 8, 35131 Padova, Italy
e DII University of Trento, via Sommarive 9, 38123, Trento, Italy
f TIFPA INFN, via Sommarive 14, 38123 Trento, Italy
g HEPHY, Austrian Academy of Sciences, 1050 Wien, Austria
Outline

• Motivations

• Experimental Measurements (X-rays irradiations)
 • Different test-structures (Gated Diodes, MOS capacitors, MOSFETs)
 • Different providers (FBK, HPK, IFX) and substrates (p-type, n-type)

• Simulation Results

• Comparison with experimental data
 • Update of the TCAD Si/SiO₂ interface damage model
 • Combined surface and bulk damage model

• Conclusions
Motivations and goals

- Simulate the effects of radiation damage on silicon devices at very high fluences (HL-LHC operation greater than $2 \times 10^{16} \text{ 1MeV } n_{eq}/\text{cm}^2$).

- Extension of the predictive capability of the past “University of Perugia” numerical TCAD model to these very high fluences:
 - Physically-grounded parametrization,
 - Keep low the number of traps (e.g. avoiding fitting),
 - No over-specific modelling (e.g. device and technology independent)
 - Compatibility with the already developed bulk damage model
 - Deep understanding of physical device behavior.

- Extraction from simple test structures of relevant parameters to be included within the model

- Validation of the new modeling scheme through comparison with measurements of different test structures before and after irradiation.
New “University of Perugia” model

- Modelling the effects of the radiation damage.
- Predictive insight of the behaviour of detectors, aiming at their performance optimization.
Test Structures

Measurement Campaign: X-ray irradiation
- carried out in Padova (IT)
- doses range: 0.05 ÷ 20 Mrad(SiO₂)
Test structures IFX and HPK

- MOS capacitors
- 1 gated diode (called GCD)
- Strip structures for Rint measurements

√ Measurement Campaign: X-ray irradiation
 - carried out in Padova (IT)
 - doses range: $0.05 \div 20$ Mrad(SiO$_2$)
New “University of Perugia” model

TEST STRUCTURE MEASUREMENTS

MODEL

PARAMETERS EXTRAPOLATION

MODEL VALIDATION

DETECTOR OPTIMIZATION
FBK - MOS Capacitors: measurements

- n-type substrate
- HF measurements at 100 kHz with a small signal amplitude of 15 mV.
- The QS characteristics were measured with delay times of 0.7 s using a voltage step of 100 mV.
- Effective oxide charge density N_{EFF} obtained from V_{FB} measurements.
- Unbiased devices during the irradiation steps.
The interface trap density (D_{IT}) was estimated by using the C-V High-Low method.

Donor interface trap states evaluation from p-type substrates

Accepter interface trap states evaluation from n-type substrates
FBK – Gated Diodes

- Unbiased devices during the irradiation steps.
- From I-V measurements the surface velocity s_0 was evaluated as a function of the dose.

$$s_0 = \frac{I_s}{n_i q A_G}$$

$$s_0 = \frac{\pi}{2} \sigma_s v_{th} D_{it} k_B T$$
FBK - MOSFETs

- $V_{th} = -0.8 \div 0.1$ V (unirradiated)
- Unbiased devices during the irradiation steps
- Radiation \rightarrow interface traps (N_{IT}) + trapped-oxide (N_{Ox}) \rightarrow V_{th} shift (ΔV_{th}).
- ΔV_{th} is separated into a contribution due to N_{IT} and due to N_{Ox}, from I_{DS}-V_{GS} of MOSFET (method proposed in McWorther Applied Physics Letters 48, 133 (1986))

\[
\Delta V_{th} = \Delta V_{N_{IT}} + \Delta V_{N_{Ox}}
\]
FBK Summary of measurements – p-type

Effective oxide charge density (N_{EFF})

Integrated interface trap density (N_{IT})

Describe the Donor trap state characteristics as INPUT PARAMETERS to the TCAD tool
FBK Summary of measurements – n-type

Effective oxide charge density (N_{EFF})

Integrated interface trap density (N_{IT})

Describe the Acceptor trap state characteristics as INPUT PARAMETERS to the TCAD tool.
IFX p-type MOS CV Measurements after X-ray

- $V_{FB} \approx -10$ V at 50 krad
- $V_{FB} \approx -17$ V at 100 krad (not shown in this figure)
- $V_{FB} \approx -30$ V at 500 krad
- $V_{FB} \approx -42$ V at 1 Mrad krad
- $V_{FB} \approx -50$ V at 10-20 Mrad
HPK and IFX p-type Summary of measurements

P-type substrate

- Very similar values between two vendors
IFX and HPK p-type GCD after X-ray irradiation

- Annealing 80°C 10 min
- Surface velocity s_0 evaluated as a function of the dose
- Area 11.71 mm2

Area 6.14 mm2
Interstrip resistance after X-ray irradiation

IFX

![Graph showing interstrip resistance vs. V_{SUB} for different radiation doses.]

HPK

![Graph showing interstrip resistance vs. Bias Voltage for different radiation doses.]

- **R_{INT}(Ω)**
 - 1E11
 - 1E10
 - 1E9
 - 1E8
 - 1E7

- **V_{SUB} (V)**
 - 0
 - 100
 - 200
 - 300
 - 400
 - 500

- **Resistance (Ω)**
 - 1x10^10
 - 1x10^9
 - 1x10^8
 - 1x10^7
 - 1x10^6

- **Bias Voltage (V)**
 - 0
 - 100
 - 200
 - 300
 - 400
 - 500

- **Radiation Doses:**
 - 50 krad
 - 100 krad
 - 500 krad
 - 1 Mrad
 - 20 Mrad
 - 100 krad
 - 500 krad
 - 1 Mrad
 - 10 Mrad
 - 20 Mrad
New “University of Perugia” model
Surface Damage Model: Gaussian

Interface trap state energy modelling

<table>
<thead>
<tr>
<th>Type</th>
<th>Peak Energy (eV)</th>
<th>Density (cm(^{-2}))</th>
<th>(\sigma) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptor</td>
<td>(E_C - 0.40)</td>
<td>40% of acceptor (N_{IT}) ([1]) ((N_{IT} = M \cdot N_{OX}))</td>
<td>0.07</td>
</tr>
<tr>
<td>Acceptor</td>
<td>(E_C - 0.60)</td>
<td>60% of acceptor (N_{IT}) ([1]) ((N_{IT} = M \cdot N_{OX}))</td>
<td>0.07</td>
</tr>
<tr>
<td>Donor</td>
<td>(E_V + 0.70)</td>
<td>100% of donor (N_{IT}) ((N_{IT} = M \cdot N_{OX}))</td>
<td>0.07</td>
</tr>
</tbody>
</table>

F. Moscatelli et al., HSTD11 & SOIPIX2017, 11 December 2017
Surface Damage Model: Uniform Bands

Interface trap state energy modelling

![Diagram showing the energy levels of the bands](image)

Band Diagram

- **Conduction Band**
 - **E_C**
 - **Acceptor Band**
 - **Donor Band**
- **Valence Band**
 - **E_V**
 - **E_C - 0.56 eV**
 - **E_V + 0.6 eV**
 - **E_V + 0.3 eV**

Band Properties

<table>
<thead>
<tr>
<th>Type</th>
<th>Energy (eV)</th>
<th>Band width (eV)</th>
<th>Concentration (cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptor</td>
<td>(E_C \leq E_T \leq E_C - 0.56)</td>
<td>0.56</td>
<td>(\text{Dit} = \text{Dit}(\Phi))</td>
</tr>
<tr>
<td>Donor</td>
<td>(E_V + 0.3 \leq E_T \leq E_V + 0.6)</td>
<td>0.30</td>
<td>(\text{Dit} = \text{Dit}(\Phi))</td>
</tr>
</tbody>
</table>
Gated Controlled Diode – surface damage

- I-V measurements compared to simulations at different doses.
- Surface velocity $s_0 \rightarrow$ agreement between simul. and meas.
 ($s_0 \neq$ fitting parameter, $s_0 =$ simul. output)

![Diode Diagram]

- 450 µm active layer
- $n_{-sub}=6 \cdot 10^{11}$ cm$^{-3}$
- $p^+=1 \cdot 10^{19}$ cm$^{-3}$

Measurements

Simulations

- $S_0 = 88.1$ cm/sv
- $S_0 = 107$ cm/s
- $S_0 = 65.2$ cm/s
- $S_0 = 69.6$ cm/s
FBK MOS Capacitors – Model validation

@ 20 Mrad

✓ Irradiated FBK structures n-type.
✓ C-V measurements compared to simulations at different doses.
→ Good agreement!

@ 50 krad

@ 100 krad

@ 10 Mrad

@ 20 Mrad
HPK p-type MOS capacitors: simulations

- Irradiated structures HPK p-type.
- C-V measurements compared to simulations at different doses.

→ Using the same model good agreement between simulation and experimental data.
IFX p-type MOS capacitors: simulations

- Irradiated structures IFX p-type.
- C-V measurements compared to simulations at different doses, using the same model.

Good agreement for IFX devices!

50 krad

1 Mrad

20 Mrad
The new “University of Perugia” model

√ For fluences up to 2.2×10^{16} 1 MeV n_{eq}/cm^2)

√ Surface damage

<table>
<thead>
<tr>
<th>Type</th>
<th>Energy Band</th>
<th>Concentration (cm$^{-2}$)</th>
<th>Oxide Charge density (cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptor</td>
<td>$E_C \leq E_T \leq E_C - 0.56$</td>
<td>$D_{IT_{acc}} = D_{IT} (\Phi)$</td>
<td>$N_{OX} = N_{OX}^{\text{pre-xray}} + \Delta N_{OX}(\Phi)$</td>
</tr>
<tr>
<td>Donor</td>
<td>$E_V + 0.3 \leq E_T \leq E_V + 0.6$</td>
<td>$D_{IT_{don}} = D_{IT} (\Phi)$</td>
<td></td>
</tr>
</tbody>
</table>

√ Bulk damage (ρ-type) *

<table>
<thead>
<tr>
<th>Type</th>
<th>E (eV)</th>
<th>σ_e (cm2)</th>
<th>σ_h (cm2)</th>
<th>η (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptor</td>
<td>Ec-0.42</td>
<td>1.0×10^{-15}</td>
<td>1.0×10^{-14}</td>
<td>1.6</td>
</tr>
<tr>
<td>Acceptor</td>
<td>Ec-0.46</td>
<td>$0.1 \times \sigma_h (\Phi)$</td>
<td>$\sigma_h (\Phi)$</td>
<td>0.9</td>
</tr>
<tr>
<td>Donor</td>
<td>Ev+0.36</td>
<td>3.2×10^{-13}</td>
<td>3.2×10^{-14}</td>
<td>0.9</td>
</tr>
</tbody>
</table>

√ Avalanche ON: Van Overstraeten–De Man (default)

Overhang effect at high fluences

Fluence 2×10^{16} n/cm2

Different particle hit
Overhang effect at high fluences: CCE

At high fluences charge multiplication effect for particle hit interesting the high-field regions
Effect of w/p ratio

Decreasing w/p ratio, the electric field at the strip corners increases.

w=40 µm p=80 µm

w=20 µm p=80 µm
Conclusions

✓ Extensive measurements campaign on dedicated FBK p-on-n and n-on-p, IFX and HPK n-on-p test structures before and after irradiation with X-rays.

✓ Surface radiation damage effects have been deeply investigated aiming at the extraction of the most relevant parameters:

✓ cross-check of N_{OX}, N_{IT}, D_{IT} evaluated by different methodologies from different test structures and for different vendors (FBK, HPK and IFX).

✓ Development of the radiation damage modelling scheme (bulk + surface), suitable for commercial TCAD tools (e.g. Synopsys Sentaurus).

✓ No over-specific modelling

✓ Application to the analysis and optimization of different classes of silicon detectors to be used in the future HEP experiments.
Backup slides
Two different irradiation conditions: without/with biasing the devices.
Comparison of Simulators - Perugia
Irradiated structure – IV curves

- compare IV curves from both simulators at different temperatures
- small difference between the two
- current lower in Synopsys
- constant ratio – difference could be due to temperature scaling

Evaluation of the current related damage rate α at 20 C (no rescale for temperature needed) gives:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Silvaco</th>
<th>Synopsys</th>
</tr>
</thead>
<tbody>
<tr>
<td>α [10^{-17} A/cm]</td>
<td>4.2±0.1</td>
<td>3.5±0.1</td>
</tr>
</tbody>
</table>
Charge Collection Efficiency

✓ Charge collection: simulations vs. measurements at different biasing voltages (T = 248 K)
 - bulk + surface model

MOS Capacitors – surface damage

- Non-Irradiated structures.
- C-V measurements compared to simulations at different doses.

![Graph showing C_LF (solid), C_{HF} (dashed)]
Effect of the Interface Trap density (N_{IT})

✓ C-V simulations two case studies:
 ✓ Separate effect of N_{ITacc} and N_{ITacc}

![Diagram](image)

- $N_{ITacc} = N_{ITdon}$
- $N_{ITacc} \approx 10 \cdot N_{ITdon}$
- $N_{ITdon} \approx 10 \cdot N_{ITacc}$
Effect of the Interface Trap density (N_{IT})

- C-V simulations two case studies:
 - Separate effect of N_{ITacc} and N_{ITacc}
 - $N_{ITacc} = N_{ITdon} = K$.

C_LF highly depends on the N_{IT}

- $K = 1.0 \times 10^{10}$ cm$^{-2}$
- $K = 2.0 \times 10^{10}$ cm$^{-2}$
- $K = 6.0 \times 10^{10}$ cm$^{-2}$
Effect of the Oxide Charge density (N_{ox})
Setting-up the measurements

✓ Measurement Campaign: X-ray irradiation
 • carried out in Padova (IT)
 • doses range:
 o 50 krad-10 Mrad (SiO$_2$)
 o 1 Mrad-20 Mrad (SiO$_2$)

✓ MOS capacitors, Gate-Controlled Diode (GCD), MOSFETs during irradiation steps.

✓ Measurements at 20°C
 • after irradiation / annealing 80°C 10 min (repeated minimum three times)

✓ Dry Nitrogen flux to maintain the relative humidity of the order of few percent
Simulation tools

Bulk damage

<table>
<thead>
<tr>
<th>Type</th>
<th>E (eV)</th>
<th>σ_1 (cm2)</th>
<th>σ_2 (cm2)</th>
<th>η (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptor</td>
<td>Ec-0.42</td>
<td>1.0×1013</td>
<td>1.0×1014</td>
<td>1.6</td>
</tr>
<tr>
<td>Acceptor</td>
<td>Ec-0.46</td>
<td>0.1×σ_1 (Φ)</td>
<td>σ_2 (Φ)</td>
<td>0.9</td>
</tr>
<tr>
<td>Donor</td>
<td>Ev+0.36</td>
<td>3.2×1013</td>
<td>3.2×1014</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Surface damage

<table>
<thead>
<tr>
<th>Type</th>
<th>Energy Band</th>
<th>Concentration (cm$^{-3}$)</th>
<th>Oxide Charge density (cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptor</td>
<td>Ec-0.3 ± 0.3 eV</td>
<td>$D_{trac} = D_{tr} (\Phi)$</td>
<td>$N_{ox} = \frac{\eta_{ox} \times 3 \times 4}{9} - \Delta N_{ox} (\Phi)$</td>
</tr>
<tr>
<td>Donor</td>
<td>Ev+0.15 ± 0.15 eV</td>
<td>$D_{trac} = D_{tr} (\Phi)$</td>
<td></td>
</tr>
</tbody>
</table>

Radiation damage model

Math

The Poisson's equation

$$\nabla \cdot (-\varepsilon_s \nabla \varphi) = q (N_D - N_A + p - n)$$

The continuity equations

$$\frac{\partial n}{\partial t} + \frac{1}{q} \nabla \cdot \vec{J}_n = G - R$$
$$\frac{\partial p}{\partial t} + \frac{1}{q} \nabla \cdot \vec{J}_p = G - R$$

Model VALIDATION

Device OPTIMIZATION

geometry
doping
mesh
layout
Surface Damage Model: Levels

- Interface trap state energy modelling

<table>
<thead>
<tr>
<th>Type</th>
<th>Peak Energy (eV)</th>
<th>Density (cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptor</td>
<td>$E_C - 0.40$</td>
<td>40% of acceptor N_{IT} [1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>($N_{IT} = M \cdot N_{OX}$)</td>
</tr>
<tr>
<td>Acceptor</td>
<td>$E_C - 0.60$</td>
<td>60% of acceptor N_{IT} [1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>($N_{IT} = M \cdot N_{OX}$)</td>
</tr>
<tr>
<td>Donor</td>
<td>$E_V + 0.70$</td>
<td>100% of donor N_{IT}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>($N_{IT} = M \cdot N_{OX}$)</td>
</tr>
</tbody>
</table>

Charge Collection Efficiency

✓ Charge collection: simulations vs. measurements at different biasing voltages (T = 248 K)
 - bulk + surface model

![Graph showing collected charge vs. fluence for neutrons, protons, and simulated surface plus bulk models with uniform, levels, and Gaussian distributions.]
Transient Analysis: MIP Response

✓ Central hit strip vs. lateral hit (in between two strips)

\[V_{BIAS} = 900 \, V \]

\[\Phi = 1 \cdot 10^{15} \, n/cm^2 \]
<table>
<thead>
<tr>
<th>Dose (rad)</th>
<th>S_0 (cm/s)</th>
<th>V_{bulk} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>measured</td>
<td>simulated</td>
</tr>
<tr>
<td>50 k</td>
<td>65.2</td>
<td>69.6</td>
</tr>
<tr>
<td>100 k</td>
<td>88.1</td>
<td>107</td>
</tr>
<tr>
<td>500 k</td>
<td>311</td>
<td>260</td>
</tr>
<tr>
<td>1 M</td>
<td>466</td>
<td>480</td>
</tr>
<tr>
<td>10 M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bulk damage

<table>
<thead>
<tr>
<th>Type</th>
<th>E (eV)</th>
<th>σ_e (cm2)</th>
<th>σ_h (cm2)</th>
<th>η (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptor</td>
<td>Ec-0.42</td>
<td>1.0×10$^{-15}$</td>
<td>1.0×10$^{-14}$</td>
<td>1.6</td>
</tr>
<tr>
<td>Acceptor</td>
<td>Ec-0.46</td>
<td>7.0×10$^{-15}$</td>
<td>7.0×10$^{-14}$</td>
<td>0.9</td>
</tr>
<tr>
<td>Donor</td>
<td>Ev+0.36</td>
<td>3.2×10$^{-13}$</td>
<td>3.2×10$^{-14}$</td>
<td>0.9</td>
</tr>
</tbody>
</table>

(7.0×1015 ÷ 1.5×1016 n/cm2)

<table>
<thead>
<tr>
<th>Type</th>
<th>E (eV)</th>
<th>σ_e (cm2)</th>
<th>σ_h (cm2)</th>
<th>η (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptor</td>
<td>Ec-0.42</td>
<td>1.5×10$^{-15}$</td>
<td>1.5×10$^{-14}$</td>
<td>0.9</td>
</tr>
<tr>
<td>Donor</td>
<td>Ev+0.36</td>
<td>3.2×10$^{-13}$</td>
<td>3.2×10$^{-14}$</td>
<td>0.9</td>
</tr>
</tbody>
</table>

(1.6×1016 ÷ 2.2×1016 n/cm2)

w/p ratio

- \(W \) vs. \(P \)
- \(W < P \)
- \(W \ll P \)

Increased \(\vec{E} \)