

Silicon pixel-detector R&D for CLIC

11th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD11)

> OIST, Okinawa, Japan December 11th, 2017

Dominik Dannheim (CERN) on behalf of the CLICdp Collaboration

CLIC accelerator and detector

- CLIC (Compact Linear Collider): linear e⁺e⁻ collider concept for post HL-LHC phase
- √s from few hundred GeV up to 3 TeV (two-beam acceleration with ~100 MV/m)
- Precision and discovery physics at the TeV scale
- Detector and physics studies within the CLICdp collaboration of 29 institutes
- ~10 institutes active in vertex/tracker R&D, collaboration with ATLAS, ALICE, RD53

Possible staged CLIC implementation

December 11, 2017

CLIC detector

Ε

2.9

Silicon Pixel R&D for CLIC

vertex

tracker

CLIC vertex-detector and tracker requirements

Vertex detector:

- efficient tagging of heavy quarks through precise determination of displaced vertices:
 - → good single point resolution: $\sigma_{SP}\sim3 \mu m$ → small pixels <~25x25 μm^2 , analog readout
 - → low material budget: $X \leq 0.2\% X_0$ / layer
 - \rightarrow low-power ASICs (~50 mW/cm²) + air cooling

<u>Tracker:</u>

- Good momentum resolution: $\sigma(p_T) / p_T^2 \sim 2 \times 10^{-5} \text{ GeV}^{-1}$
 - \rightarrow 7 µm single-point resolution (~30-50 µm pitch in R ϕ)
 - \rightarrow many layers, large outer radius (~100 m² surface)
 - \rightarrow ~1-2% X0 per layer
 - \rightarrow low-mass supports + services

Both:

- 20 ms gaps between bunch trains
 - \rightarrow trigger-less readout, pulsed powering
- few % maximum occupancy from beam backgrounds
 - \rightarrow sets inner radius and limits cell sizes
 - \rightarrow time stamping with few ns accuracy
 - \rightarrow depleted sensors (high resistivity / high voltage)
- moderate radiation exposure (~10⁴ below LHC!):
 - NIEL: < 10¹¹ n_{eq}/cm²/y
 - TID: < 1 kGy / year

Vertex-detector simulation geometry

Tracker simulation geometry

4.6 m

CLIC pixel-detector technology R&D

- Various sensor + readout technologies under study for CLIC vertex + tracking detector
- Examples of recent developments on the following slides

• Extensive detector integration studies \rightarrow not covered in this presentation

December 11, 2017

CLICpix planar-sensor assemblies

- 65 nm demonstrator CLICpix r/o ASIC:
 - 64 x 64 pixel matrix
 - 25 µm pixel pitch
 - simultaneous 4-bit time (TOA) and energy (TOT) measurement per pixel
- Single-chip indium bump-bonding with 25 μm pitch at SLAC (C. Kenney, A. Tomada)
- Functional assemblies produced with 50-200 μm thick planar sensors (Micron, Advacam active edge)
- <4 μ m single-point resolution for 200 μ m thickness
- For 50 μm thickness not enough charge sharing, limits resolution to >~7 μm (~1300 e- threshold)

CLICpix with 50 μ m planar sensor

December 11, 2017

Silicon Pixel R&D for CLIC

CLICpix2 r/o ASIC

- New CLICpix2 in same 65 nm process as CLICpix:
 - Increased matrix size to 128×128 pixels
 - Longer counters for charge (5-bit) and timing (8-bit) measurements
 - Improved noise isolation and removal of cross-talk issue observed in first CLICpix
 - More sophisticated I/O with parallel column readout and 8/10 bit encoding
 - Integrated test pulse DACs and band gap
- Test results with chips from Multi-Project-Wafer-Run
- Same chip on RD53 wafer, received last week (change from 5+1 to 7+1 metal layers)
 → access to full wafers for bump-bonding process development

CLICpix2

CLICpix2 analog F/E specifications

Parameter	Value
Power dissipation	≤ 12 μW
Area	≤ 12.5x25 μm²
Input charge, Q _{in}	nominal 4 ke-, max. 40 ke-
Minimum threshold, Q _{th,min}	≤ 600 e-
Equivalent input-referred noise, $Q_{n,in}$	≤ 70 e-
ToT dynamic range	≥ 40 ke-
ToA accuracy	≤ 10 ns
Total ionizing dose (for 10 yr)	1 Mrad
Input charge types	e-, h+
Testability	in-pixel test pulse (i.e. Q _{test}) injection

December 11, 2017

C3PD HV-CMOS sensors

- C3PD: active HV-CMOS sensor for capacitive coupling
- Commercial 180 nm High-Voltage CMOS process: transistors in deep n-well, acting as collecting electrode
- Footprint matching CLICpix2: 128 x 128 pixels, 25 μm pitch
- Analog front end based on Charge Sensitive Amplifier (CSA) + unity gain buffer
- Improved configuration and testing features:
 - I²C slow-control interface
 - Power pulsing
 - 3 x 3 pixel monitoring cluster
- Test results for standard bulk resistivity: ~20 Ohm cm, ~15 μm depletion at 60 V
- Chips on higher resistivity wafers: 80, 200, 1000 Ohm cm
 - \rightarrow increased depletion depth
 - \rightarrow larger signal, slightly reduced noise

Schematic cross section of C3PD

C3PD chip thinned to 50 μ m

C3PD+CLICpix2 glue assemblies

- Production of glue assemblies with C3PD and CLICpix2
 - Semi-automatic flip-chip bonder SET Accura 100
 - Epoxy glue deposition with automatic dispenser
 - *PixelShop* alignment software with pattern recognition
 - Curing at high temperature (100 °C) and force (5-20 N)
 - Ongoing optimization of production parameters:
 - Uniformity of glue deposition
 - Alignment precision
 - Planarity of flip-chip bonder
 - Curing parameters

Semi-automatic flip-chip bonder

PixelShop alignment tool

C3PD + CLICpix2 glue assembly

Cross section of C3PD + CLICpix2 glue assembly

December 11, 2017

C3PD+CLICpix2 in test beam

- Test-beam measurements in CLICdp Timepix3 telescope for 5 assemblies:
 - C3PD bias scans
 - CLICpix2 threshold scans
 - Angles between 0° (perpendicular) and 30°
- Analysis in progress
- Preliminary results show difference in cluster signals and sizes (varying glue-assembly quality)
- Similar residuals of 8.5-9 μm (threshold <~1000 e⁻), as expected from low cluster multiplicities
- Expect improved performance for high-res. substrates

C3PD+CLICpix2 assembly in Timepix3 telescope

7 Timepix3 Cracow SOI DUT C3PD+CLICpix2 Caribou r/o telescope planes board

December 11, 2017

Silicon Pixel R&D for CLIC

C3PD+CLICpix2 time resolution

- Track time resolution of CLICdp Timepix3 telescope <~1 ns
 → precise characterization of DUT timing capabilities
- CLICpix2: 100 MHz ToA clock \rightarrow 10 ns time binning
- Gauss fit of time residuals shows width of ~9 ns
- Tail towards later times, as expected from time walk
- \rightarrow Time residual reduced to \sim 7 ns after time-walk correction

Planar sensors on CLICpix2

- Test results with planar sensors (25x25 μm² pitch) needed for full assessment of CLICpix2 performance
- Planar active-edge CLICpix2 sensors with UBM available:
 - Advacam MPW production with ATLAS (50-150 μ m thick)
 - FBK AIDA-2020 production (120 μm thick)
- Single-chip bump-bonding in progress at IZM:
 - Processing of CLICpix2 on carrier wafers:
 - UBM deposition
 - Resist deposition + mask lithography
 - Bumping, reflow
 - Debonding
 - Thinning of CLICpix2 dies
 - Flip-chip of CLICpix2 chips and sensors
- Future plan: develop wafer-level bump deposition process for CLICpix2 wafer from RD53 submission

FBK active-edge CLICpix2 sensor

RD53 12" wafer with CLICpix2

Challenges:

ELAD sensors

neighbour px standard sensor

x, um

v v O2Imp

Distance to px center [um]

Osum

🗙 Oimpsun

Position resolution in very thin sensors so far limited to

→ lateral spread of charges during drift, cluster size ~2

Have to avoid low-field regions (recombination)

Enhanced LAteral Drift sensors (ELAD), H. Jansen (DESY/PIER)

~pixel pitch / $\sqrt{12}$ (almost no charge sharing)

Deep implantations to alter the electric field

 \rightarrow improved resolution for same pitch

Sensor performance for MIPs

Ongoing TCAD simulations:

Implantation process

New sensor concept for enhanced charge sharing

Complex production process, adds cost

• First production in 2018: generic test structures, strips

Monolithic HV-CMOS: ATLASPIX

180 nm HV-CMOS process:

- Fully integrated chip designed for ATLAS ITk upgrade
- Process modification: isolated PMOS
- 25 x 400 pixels, 130 μm x 40 μm pixel size
- 20-1000 Ω cm substrates
- Charge amplifier, discriminator in pixel
- ToT and ToA in periphery (point-to-point connection)

I. Peric et al.

Results for 80 Ω cm ATLASPIX_Simple in view of CLIC tracker requirements:

- Laboratory calibration and beam tests in CLICdp Timepix3 telescope at CERN SPS
 - Limited charge sharing \rightarrow box-shaped residuals, $\sigma \sim pitch/\sqrt{12}$
 - Time resolution ~30 ns, dominated by 10 MHz r/o clock, to be improved with new Caribou r/o system
 - Efficiency 99.6%

December 11, 2017

Monolithic HR-CMOS: INVESTIGATOR 🥼

180 nm HR-CMOS process:

- High-Resistivity epitaxial layer (15-40 μ m, 1-8 k Ω cm)
- CMOS circuitry shielded by deep P-well
- Small collection diode → small capacitance:
 - Maximise signal/noise
 - Low analogue power consumption and fast timing
- Frontside biasing:
 - Bias voltage limited by CMOS transistors to -6 V

Modified process:

- Additional low-dose N-implant to achieve full lateral depletion:
 - Improved radiation tolerance
 - Faster charge collection
 - Backside biasing possible (not limited to -6 V)

INVESTIGATOR test chip developed for ALICE (W. Snoeys et al.):

- 134 mini-matrices with 8 x 8 pixels (variation of pixel size, collection electrode size, ...)
- Source follower in each pixel, analog signals routed to periphery
- Readout with external 65 MHz sampling ADC per pixel
- Beam tests in CLICdp Timepix3 telescope, using chips with 25 μm epi thickness and 28 μm pitch, both processes

http://dx.doi.org/10.1016/j.nima.2017.07.046

INVESTIGATOR charge sharing

Charge sharing studies (pitch of 28 µm, bias voltage of -6 V):

In-pixel cluster size at different thresholds for the modified process:

Significantly more charge sharing for standard process, as expected from diffusion.

INVESTIGATOR resolution and efficiency

Impact of charge sharing on spatial resolution and efficiency for standard & modified process (pitch of 28 μ m, bias voltage of -6 V):

- Expected from non depleted regions (diffusion)
- down to $\sim 3.5 \ \mu m$

thresholds) for standard process

Efficiency & spatial resolution for both process variants within requirements for CLIC tracker.

INVESTIGATOR timing

Timing resolution for standard & modified process (pitch of 28 μ m, bias voltage of - 6 V):

Comparable timing resolution for both processes (Readout sampling frequency of 65 MHz limits achievable precision)

🐑 CLICTD monolithic HR-CMOS tracker chip 🥼

Good performance of studied HR-CMOS technology with respect to requirements of CLIC tracker

 \rightarrow Technology used for ongoing design of a fully integrated chip for the CLIC tracker

CLIC Tracker Detector (CLICTD) - monolithic HR-CMOS sensor with elongated pixels

• Segmented macro-pixel structures to maintain advantages of small collection diode (prompt and fully efficient charge collection) while reducing digital logic

Allpix² simulation framework

- Modular simulation framework for silicon tracking detectors
- Simulates full chain from incident radiation to digitized hits
- Modern and well-documented C++ code
- Full Geant4 simulation of charge deposition
- Fast charge propagation using drift-diffusion model, can import electric fields in the TCAD DF-ISE format
- Simulation of HV-CMOS sensors with capacitive coupling
- Easy to add new modules for new digitizers, other output formats, etc.
- For Introduction, User manual and code reference visit: https://cern.ch/allpix-squared
- Allpix² tutorial at BTTB Zurich (January 16-19, 2018): https://indico.desy.de/event/bttb6

Beam telescope with tilted DUT

December 11, 2017

Allpix² validation

Cluster charge

Data

Allpix²

0.015

CLICdp Work

in Progress

- Validation ongoing using test-beam data:
 - Timepix3 planar sensor assemblies
 - Charge distribution and cluster size in good agreement with test beam data
 - Timepix3 telescope simulation in progress (tilted planes)
- New sensor types and features are being added by users: SOI pixel detectors, capacitively coupled HV-CMOS sensors

Summary

- Challenging requirements for CLIC vertex+tracking detectors
- Ongoing integrated R&D program:
 - Sensor and readout technologies for precision measurements:
 - Hybrid readout ASICs with planar sensors
 - Hybrid readout ASICs with active HV-CMOS sensors
 - Integrated CMOS sensors
 - Sensor and readout simulation framework Allpix²
 - Not shown today: powering, cooling and mechanical integration studies incorporating realistic constraints

Thanks to everyone who provided material for this talk!

Additional Material

December 11, 2017

CLICpix2 characterization

• Standalone characterization of CLICpix2 to verify functionality and performance

- 61 e⁻ noise measured,
 67 e⁻ expected from simulations
- Homogenous threshold distribution
 over matrix after trimming
- Linear front-end response to test pulses

C3PD characterization

- Standalone characterization of C3PD:
 - Noise
 - Internal test pulses
 - Source calibration with ⁵⁵Fe
- Results according to expectations from simulations:
 - RMS noise: 40 e-
 - Average charge gain: 190 mV / ke-
 - Rise time: 20 ns
 - Power consumption: $5 \mu W / pixel$ (continuous)
 - Samples thinned to 50 μm show same performance as standard 250 μm ones
- Optimization of operation parameters (S/N, rise time, power consumption)

December 11, 2017

C3PD+CLICpix2 calibration

TOT

10 fF

CLICdp

Complex signal chain with several transfer functions, which are difficult to determine:

- Transient charge signal in C3PD \rightarrow TCAD / TCT meas.
- C3PD circuit response •
 - \rightarrow Circuit simulation / Test pulses, sources
- Capacitive coupling • \rightarrow COMSOL FE simul. / cross sections, test-structure meas.
- CLICpix2 response \rightarrow Circuit simulation / Test pulses, planar-sensor meas.
- Characterization and calibration in progress ٠
- Preliminary results show importance of • glue uniformity and alignment

C3PD / CLICpix2 test pulses

Glue

CLICpix2

COMSOL FE coupling simulation

Probe

ጌ

HV

Capacitance [fF]

10⁻¹

10⁻²

Pad

C3PD

special pixel

Silicon Pixel R&D for CLIC

25

C3PD+CLICpix2 calibration

CLICpix2 ToT response to C3PD test pulses

December 11, 2017

C3PD+CLICpix2 in-pixel timing

Mean reconstructed hit time vs. in-pixel position (before time-walk correction)

CERN

AGH Cracow SOI developments

December 11, 2017

AGH Cracow SOI developments

Main features:

- Snapshot readout
- Two modes of control signals generation: on chip and external (FPGA)

December 11, 2017

Caribou multi-chip modular r/o system

- Caribou universal r/o system (BNL, UniGE, CERN)
- Target: laboratory and high-rate test-beam measurements
- Generic DAQ Software Peary
- Modular concept:
 - Xilinx FPGA evaluation board ZC706 with ARM Cortex-A9 processor
 → FPGA code reduced to minimum → System-on-Chip (SoC) runs full Linux stack and actual Peary DAQ software, easily customizable
 - Generic periphery board (CaR)
 → Stable voltages, various communication standards, ADCs for monitoring
 - Project specific chip boards: currently supporting CLICpix2, C3PD, FEI4, H35Demo, ATLASPIX

 \rightarrow cheap, minimum functionality: routing, chip-specific buffers

 Open hardware / firmware / software: <u>https://gitlab.cern.ch/Caribou/</u>

CaRIBOu with CLICpix2 r/o ASIC

