New Technique for Luminosity Measurement Using 3D Pixel Modules in the ATLAS IBL Detector

Peilian Liu¹ on behalf of the ATLAS Collaboration ¹Lawrence Berkeley National Laboratory

Luminosity-determination methodology

- The bunch luminosity produced by a pair of colliding bunches is given by $\mathcal{L}_b = \frac{\mu \cdot f_r}{\sigma_{inel}}$
- ATLAS monitors \mathcal{L}_b by measuring μ_{vis} $\mathcal{L}_b = \frac{\mu_{vis} \cdot f_r}{\sigma_{vis}}$

ATLAS Preliminary

IBL Module (

BL Module

Primary

11

√s= 13 TeV

MC-derived Template

Gaussian Component

14 16

Fit

12 10

√s= 13 TeV

- Meer scan" method^[1]
- μ : number of inelastic interactions per bunch crossing
- f_r : bunch revolution frequency (11245.5Hz at LHC)
- $\sigma_{inel} = pp$ inelastic cross section
- ϵ : efficiency of the detector and algorithm
- * $\mu_{vis} = \epsilon \cdot \mu$
- * $\sigma_{vis} = \epsilon \cdot \sigma_{inel}$

Pixel Cluster Counting (PCC) Algorithm

The principle of the PCC-based luminosity measurement: the number of primary clusters is assumed to be proportional to the luminosity, and the absolute PCC luminosity scale is fixed by cross-calibrating it to LUCID in a reference run.

Counting **primary clusters** in 3D modules produced by primary particles from *pp* collisions

Because **3D modules** are located at high $|\eta|$, particles from the interaction point traverse them at grazing incidence, producing longer primary clusters and thereby improving the signal-background separation. **Background clusters** tend to be shorter and arise from:

Secondary clusters – by secondary particles from the interaction of primary particles with material

Afterglow – delayed hits from radioactive decay or material activated by previous collisions

Beam backgrounds and noise

The 14 modules in the same ring have the same acceptance

Number of clusters vs ID_{ϕ}

$$A \cdot \cos\left(\frac{2\pi}{14} \cdot \left(\mathrm{ID}_{\phi} - B\right)\right) + C$$

The interaction point (IP) is not always centered in x-y plane. More clusters in module closer to IP.

(ID_{ϕ} : Stave index)

- Fit gives correct cluster count even when modules with a transient problem are excluded (as shown)
- The parameter *C* is the average number of clusters per module in the ring and is what is used as proxy to estimate the luminosity

Correction for the $z_{\rm IP}$ Dependence

Clusters produced in all 3D modules by the interaction happening at $z_{\rm IP}$:

 n_0 $\cdot (1 + p_2 \cdot (z_{IP}))$

10

pixel pitch

 $z_{\rm IP}$ distribution is

expected to be

18000 ATLAS Simulation Preliminary

On-edge or Broken

√s= 13 TeV

14 Staves

 $r = 3.4 \, \mathrm{cm}$

modules.

 L_z

16000

14000

12000

10000

8000

6000

4000

2000

Standard Pixels

IBL

20 Modules

L = 64.3 cm

 n_0 : clusters produced by one interaction happening at the IBL center z_0 Well constrained x_{IP} and y_{IP} because of the small

 $(\sim 10 \mu m)$ transverse beam size

Clusters produced by all interactions ($< \mu >$) in the luminous region ~ Gauss(μ_z, σ_z)

 $N = \int n_0 < \mu > (1 + p_2 \cdot (z_{IP} - z_0)^2) \cdot \text{Gauss}(z_{IP}; \mu_z, \sigma_z) dz_{IP}$ $= n_0 < \mu > [1 + p_2 \cdot ((\mu_z - z_0)^2 + \sigma_z^2)]$

mainly shorter than 2 [pixels])

- A longer luminous region produces more clusters 0
- A luminous region longitudinally off-center in the 0 IBL produces more clusters

The correction is designed to return the ideal number of clusters that would have been observed if all interactions happened at the IBL center $(\mu_z = \sigma_z = 0)$ and therefore the corrected number of clusters is expected to not depend on μ_z nor σ_z anymore.

Results

An accurate measurement of the delivered luminosity

- Vital to cross-section measurements
- Important in the search of new physical phenomena

The PCC algorithm will contribute to understand and reduce systematic uncertainties, in particular from

- The long-term stability and consistency of other luminometers
- The transfer of the van der Meer calibration to the high-luminosity physics regime
- LUCID: ATLAS-preferred luminometer for run2 data
- The ratio of \mathcal{L}_{PCC} (as measured by the number of clusters) to \mathcal{L}_{LUCID} is constant over LHC fill 6024, and therefore independent of the bunch-average pile-up parameter $< \mu >$. Studies of more fills are on-going.
- In this fill, the average number of interactions per bunch crossings ranges from ~ 40 to ~ 16 .

