

First Bulk and Surface Results for the ATLAS ITk Stereo Annulus Sensors

, S.H. Abidi¹, A.A. Affolder^k, J. Bohm^j, J. Botte^a, B. Ciungu¹, K. Dette¹, Z. Dolezalⁱ C. Escobar^g, V. Fadeyev^k, J. Fernandez-Tejero^b, C. García Argos^{e.g}, D. Gillberg^a, K. Hara^m, M. Hauser^e, **R.F.H. Hunter^a**, K. Jakobs^e, J.S. Keller^a, P. Kodysⁱ, T. Koffas^a, Z. Kotek^j, J. Kroll^j, C. Lacasta^g, V. Latonova^j, J. Loenker^d, D. Madaffari^g, M. Mikestikova^j, M. Miñano^g, S. Y. Ng^f, R.S. Orr¹, U. Parzefall^e, D. Rodriguez^g, U. Soldevila^g, J. Stastny^j, M. Stegler^c, J. Suzuki^m, R. Teuscher¹, Y. Unno^h, S. Wada^m, M. Wiehe^e, L. Wiik-Fucks^e, F. Wizemann^d, V. Zahradnik^j

^aPhysics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
 ^bCentro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona, Spain
 ^cDeutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
 ^dExperimentelle Physik IV, TU Dortmund, Dortmund, Germany
 ^ePhysikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg-im-Breisgau, Germany
 ^fInstitut für Physik, Humboldt-Universität zu Berlin, Newtonstraße, Berlin, Germany
 ^gInstitut für Physik, Humboldt-Universität zu Berlin, Newtonstraße, Berlin, Germany
 ^gInstitut ode Física Corpuscular (IFIC) - CSIC-University of Valencia, Parque Científico, C/Catedrático José Beltrán 2, E-46980 Paterna, Spain
 ^hIPNS, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
 ⁱFaculty of Mathematics and Physics, Charles University, V Holesovickach 2, Prague, CZ18000 The Czech Republic
 ^jAcademy of Sciences of the Czech Republic, Institute of Physics, Na Slovance 2, 18221 Prague 8, Czech Republic
 ^kSanta Cruz Institute for Particle Physics (SCIPP), University of California, Santa Cruz, CA 95064, USA
 ^lDepartment of Physics, University of Toronto, 60 Saint George St., Toronto M5S 1A7, Ontario, Canada
 ^mInstitue of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8571, Japan

December 12th, 2017 Okinawa, Japan

11th International "Hiroshima" Symposium On the Development and Application of Semiconductor Tracking Detectors

- Background
- Stereo Annulus Geometry and Its Advantages
- The R0 Prototype Sensor

See poster by Carlos Lacasta Llacer: "Design of the first full size ATLAS ITk Strip sensor for the endcap region"

- Bulk Sensor Characteristics
 - With comparison to conventionally shaped comparable sensor See talk by Vladimir Cindro for irradiated bulk performance. Coming up next!
- Surface Property Investigation
 - With evaluation of irradiated performance

The HL-LHC and Challenges Faced

- 10x more premier p+-p+ data (3000fb-1)
 ⇒ Higher sensitivity for LHC measurements
 ⇒ A leading possibility to uncover new physics
- 500-750% increase in instantanous luminosity (levelled 5-7.5x10³⁴ cm⁻² s⁻¹)
- 600%-850% increase in number of interactions per 25ns bunch crossing (levelled 140-200 vs. 23/40 avg/peak)
- 170% increase in projected lifetime (27yr vs 10yr)
- 10x more radiation damage $(10^{16} n_{eqv}/cm^2 \text{ NIEL}, 10^7 \text{ Gy TID})$
 - \Rightarrow High granularity, reliability, radiation hardness required from detector upgrades

The ITk; Home of the First Stereo Annulus Sensor

All stereo annulus

The Stereo Annulus Design

The Stereo Annulus Geometry

- What is the best way to do strip tracking in the restricted endcap geometry?
 - Primary dimension to measure is the azimuthal angle (bending dimension)
 - Use the most sensitve feature \Rightarrow strips oriented radially
 - Secondary dimension is the radius from the beam-pipe
 - Add a small (20-40mrad) stereo angle to vastly improve resolution
 - (Tertiary dimension is the axial distance and is obtained from the disk location)

The Stereo Annulus Design

The Stereo Annulus Design; 'Reinventing' the Wheel

Uneven strip lengths ٠

Uneven strip lengths

- Prototype of innermost endcap sensor ("the R0"): *first* stereo annulus sensor ever produced
 - Annular edges obtained with 16 flat cuts
- Large surface: 90.0 cm² bias ring area
- n+-in-p, ac-coupled, single-sided, 20 mrad stereo
- 6", FZ-grown, ~325 μm thick, <100> wafer
- Optimized common p-stops, gated PTP
- Stealth diced slim edge width: 450-500 µm
- SiO_2 and AlN:H passivation
- 4360 strips with constant angular pitch in each of the four segments
- Hamamatsu Photonics
 - 72 sensors delivered to ATLAS from two batches

R0 Prototype Sensor Strip Specifications

Row	Length (mm)	l-pitch (μm)	O-pitch (μm)	Pitch (µrad)
0	18.981	74.314	77.983	193.2745
1	23.981	77.983	82.617	193.2745
2	28.981	73.454	78.434	171.8368
3	31.981	78.434	83.929	171.8368

See poster by Carlos Lacasta Llacer: "Design of the first full size ATLAS ITk Strip sensor for the endcap region"

Bulk Character Comparison Samples

<u>R0 Prototype (Stereo Annulus)</u>

- Large surface area: (90.0cm²,91.8cm²)
- n+-in-p, ac-coupled, single-sided
- 6", FZ-grown, $\sim 325 \mu m$ thick, < 100 > wafer
- Optimized common p-stops, gated PTP
- SiO_2 and AlN:H passivation
- Similar strip and contact pad numbers (4360,5128 strips in 4 segments)
- Hamamatsu Photonics
- Stereo annulus with constant angular pitch in each segment $(73.5-83.9 \ \mu m)$ and variant length $(19-32 \ mm)$
- Slim edge width for 100% of sensors $(450 \ \mu m \ annular \ edge, 500 \ \mu m \ stereo \ edge)$
- ~60 sensors from 2 batches

See talks by Liv Wiik-Fuchs and Andy Blue for annealing and irradiated testbeam performance of ATLAS12. Coming up soon!

ATLAS12 (Conventional Barrel)

- Square with parallel strips of constant pitch (74.5 µm) and length (23.9 mm)
- Slim edge width for 25% of sensors $(450 \ \mu m \ with \ a \ standard \ 980 \ \mu m)$
- ~120 sensors from 4 batches

L.B.A. Hommels *et al.*, *Nucl. Instr. Meth. Phys. Res. A*, vol. 831, pp. 167–173, 2016. (10th International "Hiroshima" Symposium)

Surface Properties; Irradiated Samples

- ie. square with parallel strips
- 252 minis have already been irradiated up to $2.2 \times 10^{15} n_{eqv}/cm^2$ with protons and neutrons
- Minis have ~8 mm long strips and come with variant pitch, coupling, and punch through protection configurations

Narrow / Default / Wide pitch (μ m): 70 / 75 / 85

(R0 Prototype pitches range from approximately $73\text{-}84\mu\text{m})$

• <u>Today's results</u>: AC-coupled, PTP minis from one mini test set irradiated with p^+ and annealed 80 minutes at $60^{\circ}C$

A Mini Test Set:

Fluence unit: $x \ 10^{14} \ n_{crr} \ /cm^2$

							-eqv/ 0	
Pitch	Coupling	РТР	Ox	5x	10x	20x	TOTAL	
Default	AC	Yes	2	2	2	2	8	
	DC	Yes	2	2	2	2	8	
	DC	No	2	2	2	2	8	
Narrow	AC	Yes	2	1	2	1	6	
	DC	Yes		1	1	1	3	
	DC	No		1	1	1	3	
Wide	AC	Yes	2	1	2	1	6	
	DC	Yes					0	
	DC	No					0	
Total			10	10	12	10	42	

Three mini test sets are *each* irradiated with:

<u>n</u>

reactor neutrons Ljubljana Reactor Jožef Stefan Institute, Slovenia P⁺ 70MeV protons CYRIC Tohoku University, Japan

See talk by Vladimir Cindro for irradiated bulk performance including n irradiation. Coming up next!

Test Setups

ATLAS

- Tests conducted in probestation or with sensor wirebonded into custom jigs
- Clean environment, dry storage
- Irradiated devices tested cold (in freezer or with a cooled chuck)

Unirradiated Devices +20°C to +30°C Irradiated Devices -20°C to -30°C

<u>R0 Prototype Test Institutes</u>

Visual Inspection

- Sensors in good condition
- Observed ~10 μ m meander on annular edge flats correlated with crystal orientation

Specification: Devoid of chips or cracks extending 50 μ m inward

Bulk Sensor Characteristics

Metrology; Sensor Bow

add

860

440

470

400

460 -

440-

420-

400

0.01

0.02

0.01

- Considerations for stresses in assembled components restricts the sensor bow
- Sensors had typical dome-like bow profiles well within specification

Specification: $< 200 \mu m$

Metrology; Sensor Bow

	<u>Sensor Bow (µm) *</u>	<u>Number of Sensors</u> (Batches) in Sample
ATLAS12	51.72 ± 12.36	100 (4)
R0 Prototype	51.18 <u>+</u> 9.30	40 (2)

Specification: $< 200 \mu m$

*RMSE against a Gaussian (Default in following tables)

- High consistency across all 40 samples measured
- Well within specification •
- Thickness also within • specification

Thickness: ~ $320-325 \mu m$ Specification: $310 \pm 25 \ \mu m$

Depletion Capacitance

- Low full depletion voltage (high resistivity) is especially desired due to the high fluence expectations
- High active depth to full thickness ratio is desired to maximize charge collection

- Excellent consistency in full depletion voltage
- High active depth proportion inferred from active area and depleted capacitance

Depletion Capacitance

- 93% of full thickness active depths $(302.3 \pm 1.4 \ \mu m)$
- Resistivity meets specification

Full Depletion Voltage

	Full Depletion Voltage [-V]	Resistivity (kΩ cm)	Number of Sensors (Batches) in Sample
ATLAS12	365.2 ± 8.61	~2.5	<i>98 (4)</i>
R0 Prototype	303.04 ± 4.17	3.24	58 (2)

Calculated resistivity: $3.24 \pm 0.03 \text{ k}\Omega \text{ cm}$

Specification: $>= 3 \text{ k}\Omega \text{ cm}$

Leakage Current – IV Curve

- Sensors must have low leakage current to maintain a feasible power budget at end-oflifetime
- For reliability sensors must be stable up to the voltage of -600V

- Orders of magnitude sufficient leakage current obtained
- Levels of instability are very reasonable

Leakage Current – IV Curve

- Vast majority of sensors show very low leakage current $[O(1nA/cm^2)]$
- Orders of magnitude within specification
- Lower level of leakage instability than the conventional sensor shape (ATLAS12)
- Instability attributed to passivation

Ê	VPX22728	No c	onset	1
Ē	VPX22729			
E				
È				
,È				
Æ				

	20°C Leakage Current at -600V [-nA/cm²]	Percentage of Sensors with Increased Leakage below -600V (-1kV)	Number of Sensors (Batches) in Sample
ATLAS12	14.62 ± 59.35	14 (28)	118 (4)
R0 Prototype	1.95 <u>+</u> 1.87	<mark>7 (15)</mark>	<i>59 (2)</i>

Specification: $< 2\mu A/cm^2 @ 20^{\circ}C and -600V$ Specification: No microdischarge onset below -600V

Bulk Sensor Characteristics

Microdischarge Humidity Dependence

Sensors with early microdischarge onset show RH 10% • a humidity dependency in the onset voltage RH 20% RH 30% 1 \rightarrow Lower humidity, higher microdischarge Current [uA] RH 40% onset voltages -RH 50% 0.1 Similar observations for previous generations 0.01 Percentage of R0 **Specification:** No -200 -400 -600 -800 sensors with leakage 0 microdischarge instability below -600V Vbias [V] onset below -600V(-1kV):7 (15) 10000 ATLAS12 Current[-uA] 40% + humid=77% 23.50% **---** 19.00% humid=60% 30% 77% Leakage Current @ 20C (-nA) 00 00 00 00 humid=50% 6.25% - 4.50% 60% + humid=40% 20% humid=30% 50% humid=20% 10 Temp=28±1 ℃ 10 Bias Voltage, V (-V) 100 200 300 600 700 0 100 200 300 400 500 600 Voltage[-V]

10

900

800

-1000

Bulk Sensor Characteristics

Long Term IV Stability

- Many sensors perform very well; fluctuations O(10nA) over several days even at elevated humidity
- Some sensors show sensistivity to higher humidities
 - Especially prevalent in the sensors with early breakdown/microdischarge
 - Some are recoverable after dry storage and sensor 'training' exercise
- Observations of instability correlated with changes in the rate of humidity change

Instability Conclusions

- Sensors showing early onset leakage instability exhibit much higher humidity sensitivity then their well-behaved counterparts
- Lowered microdischarge breakdown effect is recoverable after long-term dry storage
- Similar observations for conventional sensor shape of comparable size and complexity; not an issue with the stereo annulus geometry
- Evidence for mobile ions and interface trap activation (passivation issues)

21

Surface Property Investigation

Strip Isolation: Bias and Interstrip Resistances

Bias Resistance

- Must be large to isolate strips
- Must be large and consistent across the sensor to distribute bias effectively
- High consistency, safely within specification observed in all samples measured

Full Segment Average: 1.59 ± 0.01 MΩ*
*No. of Strips Measured: 1026
Other Measurements Range: 1.47-1.52 MΩ**
**No. of Strips (Sensors) Measured: 10 (3)

Specification: $1.5 \pm 0.5 \text{ M}\Omega$

Full Size Sensors

Strip Isolation: Bias and Interstrip Resistances

Full Size Sensors

Interstrip Resistance

- Must be much greater than the bias resistance to maintain channel isolation
- In the ATLAS ITk design the inversion channel inherent in the n+-in-p sensor is overcome with a narrow common p-stop
 - Orders of magnitude within specification

Measurements: All above 10G2* *No. of Strips Measured: 26

Specification: $> 10 \times R_{bias}$ at 300V (150M Ω)

Strip Isolation after Proton Irradiation

- Strip isolation requirements met at 50V for a fluence of $2.2 x 10^{15} n_{eqv}/cm^2$
- Bias Resistance shows very small, positive fluence and negative temperature dependencies
- Interstrip Resistance decreases with fluence and increases smoothly with bias after irradiation
- Measurements very comparable to previous generations

 R_{bins} (MO)

 $R_{int}\left(M\Omega\right)$

Coupling Capacitance

- Must be large to maximize signal and its integrity
- Very consistent and within specification
- Follows expected trends in strip length ٠
- No radiation induced change ٠

p⁺ IRRADIATED MINIS

Dielectric breakdown voltage is twice the specified ٠ value of 100V (~170V for negative voltage on the implants, $\sim 210 V$ for positive)

Full Segment Average: $25.21 \pm 0.02 \text{ pF/cm}^*$ *No. of Strips Measured: 1026

Other Measurements Range: 24.89-28.37 pF/cm** **No. of Strips Measured: 35

Interstrip Capacitance

- Needs to be small to minimize noise at the front end and needs to be much smaller than coupling capacitance for isolation of channels
- Capacitance follows expected trends in pitch
- Good consistency
- No change with proton irradiation
- All measurements within specification
 - Range: 0.61 0.89 pF/cm (at 700V)* *No. of Strips Measured: 15

Specification: < 0.9 pF/cm @ 300V, 100kHz

Coupling capacitance range: 24.89-28.37 pF/cm

Punch Through Protection (PTP)

ATLAS

- Protects the coupling capacitor in the event of large charge liberation in the bulk
- Desire early onset voltage and high current flow at -100V
- current flow at -100V
 Onset voltage increases with fluence but is only -30V at 2.2x10¹⁵ n_{eqv}/cm² (at V_{bias}= -600V)
- Suitable PTP performance

- Stereo annulus is an optimized geometry for the restricted space of an endcap strip tracker
 - Stereo angle gains in secondary resolution without negative effects
 - Equal length strips and better annular disk coverage
- The first R0 prototype sensors show excellent results
 - Meets specification in all categories
 - High consistency in bulk character
 - Low leakage and good levels of leakage instability
 - Also high consistency in the surface processing
 - All structures performing as expected
- The stereo annulus geometry is considered to have negligible effect on sensor performance from the comparisons of the R0 prototype to the ATLAS12
 - Instability is not isolated to the R0 prototype and is attributed to passivation
 - The passivation issue will be addressed in the next iteration of R0 prototype sensor

robert.francis.hunter@cern.ch

Thank you!

The research was supported and financed in part by Canada Foundation for Innovation, the National Science and 22 Engineering Research Council (NSERC) of Canada under the Research and Technology Instrumentation (RTI) grant 23 SAPEQ-2016-00015; the Ministry of Education, Youth and Sports of the Czech Republic coming from the project 24 LM2015058 - Research infrastructure for experiments at CERN; USA Department of Energy, Grant DE-SC00101072 the Federal Ministry of Education and Research, BMBF, Germany

BACKUP

The Itk Strip Detector: Home of the First Stereo Annulus Sensors

Approximately 165m² silicon surface detection area.

ITk Justifications

Operational Parameter	ID, LHC, and ATLAS Design Limits	HL-LHC Capabilities and Upgraded ATLAS Requirements	
Experiment Lifetime	10 years	Current age: ~ 7 years Age at upgrade: 14 years Full duration: 27 years	
Peak Instantaneous Luminosity (x 10^{34} cm ⁻² s ⁻¹)	1.0	Nominal: 5.0 Ultimate: 7.5 *with leveling	
Pileup (proton collisions per 25 ns bunch crossing)	Design: 23 Operational Max: ~40 (peak), ~24 (avg.)	Nominal: 140 Ultimate: 200 *with leveling	
ATLAS Trigger Rate (kHz)	Level-1: 100	Single Mode; Level-0: <i>1000</i> Dual Mode; Level-0: <i>4000</i> Level-1 (new): <i>400-600</i>	
Integrated Luminosity (fb ⁻¹)	Pixels: 400 SCT: 700 Inserted Beam Layer: 850	Nominal: 3000 Ultimate: 4000	
Maximum High Energy Particle Fluence $(x \ 10^{15} \ 1 \ MeV \ n_{eqv} cm^2)$	Pixels: 5.0 SCT: 0.2	ITk Pixel: 18.7 ITk Strip: 1.2	
Maximum Total Ionizing Dose (MGy)	Pixels: 3.0	ITk Pixel: 12.7 ITk Strip: 0.5	

The ID was not designed for the HL-LHC and will not survive it.

ITk Radiation Environment

Background

Petals and ITk Strip Component Numerology

Barrel	Radius	# of	# of	# of	# of	# of	Area
Layer:	[mm]	staves	modules	hybrids	of ABCStar	channels	[m ²]
LO	405	28	784	1568	15680	4.01M	7.49
L1	562	40	1120	2240	22400	5.73M	10.7
L2	762	56	1568	1568	15680	4.01M	14.98
L3	1000	72	2016	2016	20160	5.16M	19.26
Total half barrel		196	5488	7392	73920	18.92M	52.43
Total barrel		392	10976	14784	147840	37.85M	104.86
End-cap	z-pos.	# of	# of	# of	# of	# of	Area
Disk:	[mm]	petals	modules	hybrids	of ABCStar	channels	[m ²]
D0	1512	32	576	832	6336	1.62M	5.03
D1	1702	32	576	832	6336	1.62M	5.03
D2	1952	32	576	832	6336	1.62M	5.03
D3	2252	32	576	832	6336	1.62M	5.03
D4	2602	32	576	832	6336	1.62M	5.03
D5	3000	32	576	832	6336	1.62M	5.03
Total one EC		192	3456	4992	43008	11.01M	30.2
Total ECs		384	6912	9984	86016	22.02M	60.4
Total		776	17888	24768	233856	59.87M	165.25

The ATLAS Collaboration, "ATLAS Inner Tracker Strip Detector: Technical Design Report," Tech. Rep. ATL-TDR-025 / LHCC-2017-005, 2017.

The Stereo Annulus Design

Stereo Annulus Sensors of the ITk Endcaps

Sensor type	Number of sensors	Shape	Number of rows	Channels per sensor	Min/max pitch (µm)
Short-strips	3808	Square	4	5128	75.5
Long-strips	7168	Square	2	2564	75.5
EC Ring 0	768	- (-0.3-) 	4	4360	73.5/84
EC Ring 1	768		4	5640	69/81
EC Ring 2	768		2	3076	73.5/84
EC Ring 3	1536	<u></u>	4	3592	70.6/83.5
EC Pine 4	1526			2052	72 4 / 92 0
EC King 4	1556	A	-2	2052	73.4/03.9
		1			
EC Ring 5	1536		2	2308	74.8/83.6

Ring/Row	Inner Radius [mm]	Strip Length [mm]	Strip Pitch [µm]
Ring 0 Row 0	384.5	19	75.0
Ring 0 Row 1	403.5	24	79.2
Ring 0 Row 2	427.5	29	74.9
Ring 0 Row 3	456.4	32	80.2
Ring 1 Row 0	489.8	18.1	69.9
Ring 1 Row 1	507.9	27.1	72.9
Ring 1 Row 2	535	24.1	75.6
Ring 1 Row 3	559.1	15.1	78.6
Ring 2 Row 0	575.6	30.8	75.7
Ring 2 Row 1	606.4	30.8	79.8
Ring 3 Row 0	638.6	32.2	71.1
Ring 3 Row 1	670.8	26.2	74.3
Ring 3 Row 2	697.1	26.2	77.5
Ring 3 Row 3	723.3	32.2	80.7
Ring 4 Row 0	756.9	54.6	75.0
Ring 4 Row 1	811.5	54.6	80.3
Ring 5 Row 0	867.5	40.2	76.2
Ring 5 Row 1	907.6	60.2	80.5

The ATLAS Collaboration, "ATLAS Inner Tracker Strip Detector: Technical Design Report," Tech. Rep. ATL-TDR-025 / LHCC-2017-005, 2017.

An ATLAS12EC Sensor

Sensor Specifications

)	Sensors
	AN
	L-FVI
	ATLAS
	EXPERIMENT

	ATLAS12EC
Wafer size	150 mm
Thickness	310 +/- 25 μm
Orientation	<100>
Туре	Р
Ingot	FZ
Resistivity	>3 kΩcm
Strip segments	4
Strip implant	N
Strip implant Width	16 μm
Strip bias resistor	Polysilicon
Strip bias resistance (R_b)	1.5+/-0.5 MΩ
Strip readout coupling	AC
Strip readout metal	Pure Aluminium
Strip readout metal width	20 µm
Strip AC coupling capacitance	>20 pF/cm
Strip isolation	$>10\times R_b$ at 300 V
Strip isolation method	Narrow-common p-stop
Gap between strip segments	56 μm (rail region) 70 μm (no rail region)
Microdischarge onset voltage	>600 V
Maximum operation voltage (*1)	600 V
Leakage current	$<2 \mu A/cm^2$ at 600 V
Radiation tolerance	1.5×10^{15} 1-MeV n _{eo} /cm ²

^(*1) The voltage rating of the external high voltage cable is 500V and tested 1 KV.

ATLAS ITk Protoype Sensors

See talks by Liv Wiik-Fuchs and Andy Blue for annealing and irradiated testbeam performance of ATLAS12. Coming up soon!

ATLAS07

- First full size sensor (~100cm²)
- Half of strips rotated by 40mrad

J. Bohm. et al., Nucl. Instr. Meth. Phys. Res. A, vol. 636, pp. S104–S110, 2011.

ATLAS12

- Slim edge width for $\sim 30\%$ of sensors $(450\mu m)$
- Two variants
 - Same as A07 (half of strips stereo rotated)
 - All four strip segments unrotated ^{2}

L.B.A. Hommels $et\ al.,\ Nucl.$ Instr. Meth. Phys. Res. A, vol. 831, pp. 167–173, 2016.

ATLAS12EC Sensors

ATLAS12EC Mini Sensors

Mini distribution:

Pitch	Coupling	PTP	Total	Irradiated	Left
Default	AC	Yes	166	48	118
	DC	Yes	166	48	118
	DC	No	166	48	118
Narrow	AC	Yes	58	36	22
	DC	Yes	29	18	11
	DC	No	29	18	11
Wide	AC	Yes	58	36	22
	DC	Yes	29	0	29
	DC	No	29	0	29
			730	252	478

Irradiation test set:

 $(\mathrm{x}10^{14}\,\mathrm{n_{eqv}}/\mathrm{cm}^2)$

Pitch	Coupling	РТР	Ox	5x	10x	20x	TOTAL
Default	AC	Yes	2	2	2	2	8
	DC	Yes	2	2	2	2	8
	DC	No	2	2	2	2	8
Narrow	AC	Yes	2	1	2	1	6
	DC	Yes		1	1	1	3
	DC	No		1	1	1	3
Wide	AC	Yes	2	1	2	1	6
	DC	Yes					0
	DC	No					0
Total			10	10	12	10	42

Three mini test sets are *each* irradiated with:

n

reactor neutrons Ljubljana Reactor Jožef Stefan Institute, Slovenia P⁺ 70MeV protons CYRIC Tohoku University, Japan

First ATLAS12EC Module

See poster by Carlos Garcia Argos : "<u>Assembly and Electrical Tests of the</u> First Full-size Forward Module for the ATLAS ITk Strip Detector"

Measurement Techniques

Bulk Sensor Characteristics

More Visual Inspection Results

Bulk Sensor Characteristics

More Metrology Results

•

Number of Sensors

8

7 6 5

3 2

25 30 35

EXPERIMENT W034 High consisitency *well* within specification DESY Valencia Prague IFIC Dortmund Carleton Update plot W036 "Turtle-shell" relic believed to be setup related 45 50 55 60 65 40 70 75 Sensor Bow [um] 0.0240

Full Depletion Kink

- Sensors from one institute • removed from CV plot due to systematic parasitic capacitance that is not yet fully understood
 - 9 sensors sit above the 49 sensors in the lower curve seen

400

600

This systematic does not • affect the full depletion voltage extraction, as seen

Inverse Square Bulk Capacitance [nF -2]

0.25

0.2

0.15

0.05

Entries: 49

Batch VPX22728 (29)
 Batch VPX22729 (20)

200

CV Curves (Over the Generations)

L.B.A. Hommels *et al.*, "Detailed Studies of Full-Size ATLAS12 Sensors". *Nucl. Instr. Meth. Phys. Res. A*, vol. 831, pp. 167–173, 2016.

J. Bohm. *et al.*, "Evaluation of the bulk and strip characteristics of lrage area n-in-p silicon sensors intended for a very high radiation environment," *Nucl. Instr. Meth. Phys. Res. A*, vol. 636, pp. S104–S110, 2011.

Bulk Sensor Characteristics

IV Curves (Over the Generations)

J. Bohm. *et al.*, "Evaluation of the bulk and strip characteristics of lrage area n-in-p silicon sensors intended for a very high radiation environment," *Nucl. Instr. Meth. Phys. Res. A*, vol. 636, pp. S104–S110, 2011.

Bulk Sensor Characteristics

IV Hysteresis

- Observed in sensors with and without strenous humidity history
 - Evidence for bias activated interface states

Hysteresis of Interstrip Capacitance

VPX22728-W015 (R0 sensor)

Bulk and Surface Property Investigation

Hysteresis in ATLAS07 and ATLAS12

ATLAS12 Cbulk

ATLAS12 Cis

4.5

Humidity Sensitivity – A Tale of Two Sensors

50

Bulk Sensor Characteristics

Humidity Sensitivity – A Tale of Two Sensors

Bulk Sensor Characteristics

Long Term IV Stability and Humidity

0.02

0.00 mu_19_00_00

Fri_07_00_00

Fri_19_00_00

0.1

0.05 0

0

10

20

30

Time (hours)

40

50

60

70

581,19,00,00 Time

sat_07_00_00

sun_29_00_00

Mon_01_00_00

sun_07_00_00

0.02

0.00

Thu 12.00.00

Thu 17.00.00

Thu 23,00,00

Fri_05_00_00

FN_11_00_00

Time

00.00 FN.17.00.00 FN.23.00.00 Sat.05.00.00 Sat.11.00.00

FXPFRIMEN

More Evidence for Passivation Issues

R0 W030 stability in test pot 100 room temperature Current [µA] 10 1 0.1 25 0 5 10 15 20 Time [hours] **Relative Humidity** 50 45 Humidity control stopped working 40 % H2 35 Compliance 30 level 25 20 5 10 20 0 15 25 Time [hours]

400V

Triple peak at end of run:

 $1^{\mbox{\tiny SI}}$ peak: ~51.5% up , quick I decrease

2nd peak: ~50.5% up , quick I decrease

3rd peak: ~49.75% up, leave fan slow to bring down H slow, instability lasts to lower H than with quick fall

Bulk Sensor Characteristics

ATLAS12 Humidity Sensitivity

ATLAS12 VPX12318-W602 65h@-600V VPX12318-W603 24h@-600V VPX12318-W606 24h@-600V VPX12318-W608 24h@-600V VPX12318-W612 24h@-600V VPX12518-W684 17h@-300V VPX12518-W697 24h@-600V VPX12519-W736 24h@-200V VPX12519-W746 24h@-600V VPX12519-W748 18h@-130V

Dielectric Breakdown Voltage

Postive Voltage on Strips: ~200V-210V

Negative Voltage on Strips: ~150V-170V

Test Voltage (|V|)

- Understandable discrepency between negative and positive voltage breakdowns
 - Sensor unbiased, inversion layer opposes the positive strip voltage, reinforces the negative

Specification: > 100V

Strip and Implant Resistance

• Must be 'small' to maximize signal integrity and consistent for comparable channel response

56

Frequency Dependence of Interstrip Capacitance

Unirradiated

100kHz is chosen as test frequency (sits well into the plateau region)

More Measurements of Coupling Capacitance

Segment	1	2	3	4
Number of Measurements	17	4	3	4
Range (pF)	46.42-46.95	58.21-59.02	69.75-72.28	76.24-77.42
Average (pF)	46.70	58.51	70.90	77.09
Average (pF/cm)	25.24	24.90	24.88	24.55

Sensor ID	C_{coup} [pF]
W031	24-25
W034	27.55
W084	28.19
W086	28.37

More Results for Bias and Interstrip Resistance

Sensor ID

W031

 R_{is} [G Ω]

10 - 120

 $R_b [M\Omega]$

1.47

3 random strips per sensor

Interstrip Resistance (Rint) ٠

(Irradiated) Performance of the PTP

60

Irradiated Performance of the Interstrip Capacitance

