Annealing studies of irradiated p-type sensors designed for the upgrade of ATLAS Phase-II Strip Tracker

Motivation: HL-LHC / ATLAS Inner Tracker

2024 luminosity upgrade of the LHC to the HL-LHC
ATLAS: replace Inner Detector with all silicon Inner Tracker (ITk) ➔ Challenges:
• Fivefold instantaneous luminosity
• Tenfold increase in integrated luminosity (\sim3000 fb$^{-1}$):
 • Increased particle flux ➔ radiation damage ➔ need more radiation tolerant silicon

Radiation leads to:
• Increase in depletion voltage
• Loss of charge carries due to trapping
• Higher leakage current

Move from current n-type bulk silicon p-bulk silicon for upgrade mandatory
Motivation: HL-LHC run-time

- Expected runtime ~10 years
- Shutdown for machine maintenance on yearly basis
- Detectors will potentially not be cooled during these periods ➔ annealing
- Annealing describes migration of radiation induced defects in silicon
- Measurement standard: 80 min annealing at 60°C
- Current annealing model based on n-bulk
 - Understanding of annealing of p-type silicon bulk mandatory for HL-LHC
Hamburg Annealing Model

- Temperature and time dependent

\[\Delta N_{\text{eff}} = N_0 e^{-t/\tau} + N_C + N_{\infty}(1 - e^{-kt}) \]

- Three annealing terms: constant, beneficial and reverse:

\[\alpha(t) = \alpha_i e^{-t/\tau_i} + \alpha_0 + \beta \ln(t) \]

- Damage rate \(\alpha \) proportional to leakage current

\[\alpha(t) = \frac{\Delta I}{\Phi_{\text{eq}} V} \]
Method and Devices under Test

Measurements:
• Charge collection using a 90Sr source
• Leakage current
• Impedance (capacitance)
• Annealing two set of sensors: one room-temperature (23°C) (RT) one at 60°C

- ATLAS12 Hamamatsu Photonics
- Mini strip sensors (1x1 cm2)
- p-type with n-type readout strips
- 74.5µm pitch, 320µm thickness
- Float-zone technology
- Irradiated with 24 MeV protons to fluences between 5×10^{13} and 2×10^{15} n$_{eq}$ cm$^{-2}$
Long Term Annealing at 60°C: 2×10^{15} n$_{eq}$

Charge collection:
- Increase during beneficial annealing (<300 min)
- Decrease during reverse annealing
- Strong increase for $t > 3000$ min due to charge multiplication
- Corresponding behaviour found in ATLAS07 sensors

Leakage current:
- Decrease during beneficial and reverse annealing
- Strong increase in charge multiplication regime
Long Term Stress : Signal Stability @ 1100V

Charge multiplication under long term bias:
• Signal declines under permanent bias
• Annealing: 80 min at 60°C recuperates CM
• Stronger decline in following measurement
• Resting of sensor only recuperates a fraction of signal
• Leakage current and noise measurement follow the trend

2x10^{15} \text{n}_{eq} \text{cm}^{-2}, 5000 \text{ min annealing}
at 60°C, sensor in charge multiplication

No reliable operation mode
Temperature Scaling Factor: RT vs 60°C

- Determine scaling factor between RT and 60°C annealing
- Scaling factors between k=100/110
- Literature value is k=325,
- This indicates different annealing behaviour of p-type sensors
Temperature Scaling Factor: RT vs 60°C

<table>
<thead>
<tr>
<th>Fluence $\frac{neq}{cm^3}$</th>
<th>$5e13$</th>
<th>$1e14$</th>
<th>$5e14$</th>
<th>$1e15$</th>
<th>$2e15$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling Factor k</td>
<td>$108 \pm 8^*$</td>
<td>$101 \pm 15^*$</td>
<td>108 ± 12</td>
<td>101 ± 9</td>
<td>108 ± 8</td>
</tr>
</tbody>
</table>

- Smaller temperature factor may be attributed to:
 - Different oxygen concentration
 - Effect of moving from n-type to p-type leads to changes in defect annealing
 - Change in sensor properties

Measure effective doping concentration using impedance measurements

$$\frac{1}{C^2} = \frac{1}{A^2} \frac{2V}{\varepsilon q N_{eff}}$$

differences in the activation energy and half-life time of annealing process
Impedance Measurements: $1 \times 10^{14} \, n_{eq}$

- C/V profiles only accessible for low fluences
- At higher fluences a strong dependency on frequency is found
- Measure N_{eff} after each annealing step for RT and 60°C sensors
- Access to annealing parameters k and τ
N_{eff} and Charge Collection: $2 \times 10^{14} n_{eq}$

- Correlation between charge collection and N_{eff}
- Decrease of effective doping concentration during beneficial annealing, increase during reverse annealing (measurement still ongoing)
- More than 14 d of annealing at 60°C (4 years at RT)
- No clear sign of charge multiplication yet
N_{eff} and damage parameter

- Hamburg model describes N_{eff} and damage factor α
- ATLAS12 anneal slower minimum at about $t=150$ min (was 80 min in Hamburg Model)
- Factor $k=100$ between RT and 60°C is reproduced
Conclusion and Outlook

- Long term study on annealing behaviour of p-type silicon up to 4d at 60°C
- Hamburg Model with slight alterations describes sensor behavior
- Smaller temperature scaling factor (O(100) vs. 325) between RT and 60°C annealing is found
- This means sensors anneal faster at 60°C than predicted
- Can not simply use measurement standard of 80 min at 60°C annealing
- Extension: annealing sensors at 40°C and 80°C

- Charge multiplication effect appears in long term annealing
- CM signal dissapers over time, some recovery after further annealing

Acknowledgement: The irradiations were performed at Karlsruhe Institute of Technology (KIT) by A. Dierlamm, supported by the Initiative and Networking Fund of the Helmholtz Association, contract HA-101 (Physics at the Terascale) and the European Commission under the FP7 Research Infrastructures project AIDA, Grant agreement no. 262025,
Backup slides
Radiation Damage in Silicon Sensors

Higher depletion voltage
Due to change in doping concentration
After high fluences: no full depletion possible
Solution: different silicon material, modified detector geometry (3D, thin detectors)

Higher trapping
Liberated charge carriers get trapped at crystal defects
Measured signal decreases
Solution: modify detector geometry (3D, thinner)

Higher leakage current
More generation-recombination centres
Higher noise, higher power consumption, thermal runaway
Solution: cooling of detector

Dose: inner strip layers

![Graphs showing radiation damage effects on silicon sensors.](image-url)
Motivation: Phase-II Radiation Environment

- 36 MRad, $8.1 \times 10^{14} \text{n cm}^{-2}$
- 50 MRad, $1.2 \times 10^{15} \text{n cm}^{-2}$
- 1700 MRad, $2.3 \times 10^{16} \text{n cm}^{-2}$