Superior radiation hardness of 3D pixel sensors up to unprecedented fluences of $3e16 n_{eq}/cm^2$

Jörn Lange, Sebastian Grinstein, Stefano Terzo, David Vázquez Furelos

IFAE Barcelona

Maria Manna, Giulio Pellegrini, David Quirion

CNM-IMB-CSIC Barcelona

Hiroshima Symposium, Okinawa, 13 December 2017

3D Silicon Pixel Detectors Overview

IBL

HL-LHC

- 3D Silicon detectors: radiation-hard sensor technology
 - Electrode distance decoupled from thickness S. Parker et al. → fast charge collection, trapping reduced
- Already applied in ATLAS IBL, AFP, CT-PPS
 - Radiation hardness up to $5e15 n_{eq}/cm^2$ required and proven
- Future HEP applications require more radiation hardness and small pixel sizes
 - HL-LHC pixel detectors (2024)
 - Full 4000 fb⁻¹: 2.5e16 n_{eq}/cm² innermost layer (ATLAS ITk) L. Rossi's talk
 - M. Garcia-Sciveres' talk But FE chip not specified to be so radiation hard → Baseline requirement: 1.3e16 n_{ea}/cm² (replacement of 2 inner layers)
 - 50x50 μm² or 25x100 μm² pixel size to cope with occupancy
 - FCC-hh (far future)
 - G. Kramberger's talk 7e17 n_{eq}/cm²
- Aim: Develop new generation of ultra-radiation-hard 3D pixel detectors

see also H. Oide's talk for FBK

- In the framework of ATLAS HL-LHC pixel upgrade
- But exploring limits of technology

3D Pixel Strategy Barcelona

1. Tested IBL/AFP generation

- 230 μm thick, double-sided CNM process, 50x250 μm² 2E FEI4 pixels
- Radiation hardness demonstrated up to ITk fluence (9e15 n_{eq}/cm²)

J. Lange et al., 2016 JINST 11 C11024

2. Develop prototype small-pitch 3D pixels matched to FEI4

- Pixel size 50x50 and 25x100 μm²
 - Reduced electrode distance → more radiation hard
 - Only one 50x50 μm^2 sensor pixel readout by 50x250 μm^2 chip pixel, rest shorted to ground \rightarrow 20% active area
- Double-sided 230 µm CNM run J. Lange et al., arXiv:1707.01045
 - This study
- Recently produced thinner 100-150 µm single-sided 3D

3. Produce RD53A 3D pixels (on-going)

"Real" 50x50 and 25x100 µm²

D. Vázquez Furelos et al., 2017 JINST 12 C01026

Beam Tests and Irradiations

Irradiations

- KIT 23 MeV p: uniform 5e15 and 1e16 n_{eq}/cm^2
- PS IRRAD 23 GeV p: non-uniform 12 or 20 mm beam → allows probing a large range of fluences on single pixel device
 - Reached up to 3e16 n_{ea}/cm²
- FEI4 chip survived harsh doses beyond specs in many cases! (though not all)
- Many beam tests at CERN SPS H6, 120 GeV pions

Device	Irradiations	Fluence peak step	Fluence peak total	Annealing	Beam test
		[1e16 n _{ea} /cm ²]	[1e16 n _{ea} /cm ²]		
7781-W4-C1, 50x50	PS1 20mm 2016	1.5	1.5	7d@RT	Sep 2016
	PS3 20mm 2017	1.1	2.6	18d@RT	July 2017
	PS4 20mm 2017	0.6	3.1	15d@RT	Not working
7781-W5-C2, 50x50	KIT1 2016	0.5	0.5	8d@RT	Nov2016
	PS3 20mm 2017	1.0	1.5	18d@RT	Not working
7781-W3-C1, 50x50	KIT1 2016	0.5	0.5	8d@RT	Nov 2016
	PS2 12mm 2016	0.7	1.2	15d@RT	
	PS3 20mm 2017	1.1	2.3	18d@RT	July 2017
	PS4 20mm 2017	0.5	2.8	15d@RT	Oct 2017
	PS5 20mm 2017	~0.5	~3.3	21d@RT	2018?
7781-W4-E, 50x50	KIT2 2017	1.0	1.0	as irrad.	July2017
				7d@RT	Sep+Oct 2017
7781-W3-E, 50x50	Unirr.				Sep 2017

Efficiencies before Irradiation

M. Manna, 30th RD50 Workshop Krakow 2017

J. Lange et al., 2016 JINST 11 C11024 (plus new data)

Test beam with EUDET/AIDA telescope

- Reference tracks with few µm resolution
 → select Region of Interest (ROI) within active region and away from telescope resolution effects
- 98% plateau efficiency starting at 0 V!
 - Consistent with high charge collection at 0 V in small-pitch 3D strips
 - Thanks to small electrode distance (28-35 μm)

Uniform Irradiation at KIT

3D CNM, 50x50 µm² 1E, d=230 µm, 1ke 10ToT@20ke, p irrad (KIT)

- ToT and eff. very uniform over pixel: effect of 3D columns only dominant at low V
- ToT: high charge collection efficiency after irrad.
- Efficiency: already 97% at 40 (100) V for 5e15 (1e16) n_{eq}/cm² at 0° tilt
 - Significantly better than for standard IBL/AFP FEI4
 - Further improves at 15° tilt

CNM 230 µm, p irrad (KIT)

PS Non-Uniform Irradiation - Methodology

- Fluence normalization obtained with 20x20 mm² Al dosimetry foil
- Profile from
 - Beam profile monitors: 12-20 mm FWHM
 - Also made fluence maps by pixelating Al foil
- Beam position
 - From Al foil profile
 - For first irradiations also in-situ from pixel measurements (eff., noise, threshold before tuning, TDAC after tuning etc.)

Final fluence maps for analysed data

PS Non-Uniform Irradiation - Uncertainties

- Introduce variations by +/- 1 mm in beam σ, beam centre offset, Al foil offset (both x, y)
- Vary in all combinations
- Determine maximum deviation from default value (envelope) for all variation combinations
 → take as systematic uncertainty (conservative)
- 15-20% uncertainty at highest fluence, 45% (70%) at lowest fluence for 20 (12) mm beam

Efficiency vs. Fluence

W4-C1 PS1

W4-C1 PS3

W3-C1 PS3

W3-C1 PS4

- Large range of fluence on single device
- Efficiency decreases with fluence at low voltage
- Efficiency improves with voltage
- NB: Fluence uncertainties large at low fluence range (~50%)

Efficiency vs. V Compilation

3D CNM, $50x50 \mu m^2 1E$, $d=230 \mu m$, $1.0 ke^-$, 0°

- Compile only at (or close to) highest fluence with lowest uncertainty (~15-20%)
- Also KIT uniform irradiation added
 - PS+KIT agree well at 1e16 n_{eq}/cm²
- 98% plateau efficiency reached even after 2.7e16 n_{eq}/cm²

Operation Voltage vs. Fluence

- $V_{97\%}$: estimate of operation voltage
- Highly improved operation voltage for 50x50 µm² 3D compared to IBL/AFP generation
- At ITk baseline fluence of 1.3e16 n_{ea}/cm² only 100 V needed
 - Thin planar needs ~500 V N. Savic et al., JINST 11 (2016) C12008
- Even at 2.7e16 n_{eq}/cm^2 : $V_{97\%} < 150 \text{ V}$

IV and Power Dissipation

CNM 230 µm, p irrad (KIT), -25°C, 1 week@RT anneal.

- Important parameters for thermal run away
- From one pixel device only extractable for uniform irrad. (KIT)
 - At fixed V, 50x50 µm² has higher I_{leak}, but same at V_{97%}
 - Power dissipation improves due to lower V_{97%}
- For non-uniform PS irradiation PS, V_{97%} from test beam efficiency combined with n-irradiated 3D strip IV
- Considerably lower P than for IBL 3D gen. and planar devices (25 mW/cm² at 1e16 n_{ea}/cm²) N. Savic et al., JINST 11 (2016) C12008

New CNM 3D Runs: Thin + RD53A

See poster by G. Pellegrini: 3D-Si single sided sensors for the innermost layer of the ATLAS pixel upgrade

- Thin 3D run with small-pitch FEI4 prototypes just finished
 - 100 and 150 μm single-sided on SOI wafers
 - Probing and dicing on-going

- 3D runs with RD53A sensors on-going
 - Single-sided 72, 100+150 μm on SOI and double-sided 200 μm
 - 50x50 μm² 1E, 25x100 μm² 1E and 2E
 - Production on-going → expected for end of year
 - UBM + flip-chip to be done in-house by CNM + IFAE
- → sensors expected on time for arrival of RD53A

Conclusions and Outlook

- Studied 230 µm CNM 3D production with small pixel size up to unprecedented fluences of 3e16 n_{eq}/cm² beyond full ITk fluences
 - First time pixel devices irradiated to such high fluences (and survived)
 - Highly reduced operational voltage and power dissipation wrt. IBL/AFP generation and planar after irradiation
 - 98% efficiency at 0 V before irradiation
 - 97% efficiency at 100 V and 13 mW/cm² for 1.4e16 n_{eg}/cm² → safe operation at ITk baseline fluence (1 replacement)
 - 97% efficiency reached at <150 V after 2.7e16 n_{eg}/cm²
 - No indication that limit has been reached...
- Single-sided thin (72-150 µm) 3D productions under way at CNM
 - Also with RD53A-chip geometry in addition to FEI4 prototypes → expected to have even better performance with new optimised readout chip

50x50 µm²

Unprecedented radiation hardness of 3D pixel detectors demonstrated

BACKUP

3D Detector Principle

Radiation-hard and active/slim-edge technology

Advantages

- Electrode distance decoupled from sensitive detector thickness
 - \rightarrow lower $V_{depletion}$
 - → less power dissipation, cooling
 - → smaller drift distance
 - → faster charge collection
 - → less trapping
- Active or slim edges are natural feature of 3D technology

Challenges

- Complex production process
 - → long production time
 - → lower yields
 - → higher costs
- Higher capacitance
 - → higher noise
- Non-uniform response from
 3D columns and low-field regions
 - → small efficiency loss at 0°

Different 3D Technologies

Double sided (available at CNM)

- IBL/AFP-proven technology
- No handling wafers needed
 → thickness limited to ≥200 µm and wafers to 4"
- 3D columns ~8 µm diameter
- Single sided (available at FBK, SINTEF, CNM)
 - On handling wafer (SOI or Si-Si bonding)
 → 6" possible (FBK, SINTEF)
 - Active thickness range 50-150 µm being explored
 - Narrow 3D columns ~5 µm possible

Double-sided

G. Pellegrini, CNM

First Small-Pixel CNM Run for HL-LHC

D. Vázquez Furelos et al., 2017 JINST 12 C01026 J. Lange et al., 2016 JINST 11 C11024

- Run 7781 finished in Dec 2015 (RD50 project)
- 5x 4" wafers, p-type, 230 µm double-sided, nonfully-passing-through columns (a la IBL)
- Increased aspect ratio 26:1 (column diameter 8 µm)
- First time small pixel size 25x100+ 50x50 µm² (folded into FEI4 and FEI3 geometries)
 - Also strips and diodes down to 25x25 µm² 3D unit cell

Sample Characterisations

Pixel Geom.	C/el. [fF] (*)	C/pixel [fF] (*)	Noise [e]
25x100 2E	42	84	160
50x50 1E	37	37	105-140

(*) from pad diodes

D. Vázquez Furelos et al., 2017 JINST 12 C01026

- IVs
 - $V_{RD} \sim 15-40 \text{ V}$
 - Improved in new productions after
 CNM process optimization
 S. Grinstein et al., JINST 12 (2017) C01086
- C <100 fF/pixel (within RD53 limit)
- Noise 100-160 e similar to standard 3D FEI4s
- Sr90 source scans on pixels
 - Similar charge as in standard FEI4s

Sr90 and laser scans on strips

- 17 ke charge as expected for both 50x50 µm² and 30x100 µm² (unirr.)
- Almost full charge even at 0-2 V
 → low V_{dep} due to low L_{el}
- Uniform even after 1e16 n_{ea}/cm²
- Measurements up to 2e16 n_{eq}/cm² in progress

Strips laser scan 25x100 µm², 1e16, 150 V

Efficiency before Irradiation

- Select ROI within active region
 → avoid inactive area + telescope smearing
- Efficiency in ROI
 - 97% already from 1 V at 0°: very early depleted due to small electrode distance
 - Improvable by tilting: avoids hitting only lowefficiency regions

0.6

State of the Art: IBL/AFP Generation

- 230 µm thick sensors by CNM and FBK (double-sided)
- FEI4s: 50x250 μm² 2E, 67 μm inter-el. distance
- Radiation hardness up to 5e15 n_{eg}/cm² established (IBL)
- Explored limits further with irradiations up to HL-LHC fluences
 - At 9.4e15 n_{eq}/cm²: 97.8% efficiency at 170 V!
 - Power dissipation 15 mW/cm² at 1e16 n_{eq}/cm² and -25°C

→ Good performance at HL-LHC fluences even for existing 3D generation

J. Lange et al., 2016 JINST 11 C11024

aard Ring bbing pad

Standard FE-I4 50x250 µm², 2E

