Superior radiation hardness of 3D pixel sensors up to unprecedented fluences of 3×10^{16} n$_{eq}$/cm2

Jörn Lange, Sebastian Grinstein, Stefano Terzo, David Vázquez Furelos
IFAE Barcelona

Maria Manna, Giulio Pellegrini, David Quirion
CNM-IMB-CSIC Barcelona

Hiroshima Symposium, Okinawa, 13 December 2017
3D Silicon Pixel Detectors Overview

- 3D Silicon detectors: radiation-hard sensor technology
 - Electrode distance decoupled from thickness
 → fast charge collection, trapping reduced
 - Already applied in ATLAS IBL, AFP, CT-PPS
 - Radiation hardness up to $5 \times 10^{15} \text{n}_\text{eq}/\text{cm}^2$ required and proven
 - Future HEP applications require more radiation hardness and small pixel sizes
 - HL-LHC pixel detectors (2024)
 - Full 4000 fb⁻¹: $2.5 \times 10^{16} \text{n}_\text{eq}/\text{cm}^2$ innermost layer (ATLAS ITk)
 - But FE chip not specified to be so radiation hard
 → Baseline requirement: $1.3 \times 10^{16} \text{n}_\text{eq}/\text{cm}^2$ (replacement of 2 inner layers)
 - 50x50 µm² or 25x100 µm² pixel size to cope with occupancy
 - FCC-hh (far future)
 - $7 \times 10^{17} \text{n}_\text{eq}/\text{cm}^2$ G. Kramberger’s talk
 - Aim: Develop new generation of ultra-radiation-hard 3D pixel detectors
 - In the framework of ATLAS HL-LHC pixel upgrade
 - But exploring limits of technology

S. Parker et al. M. Garcia-Sciveres’ talk
L. Rossi’s talk M. Garcia-Sciveres’ talk
G. Kramberger’s talk
see also H. Oide’s talk for FBK
1. Tested IBL/AFP generation
 - 230 µm thick, double-sided CNM process, 50x250 µm² 2E FEI4 pixels
 - Radiation hardness demonstrated up to ITk fluence (9e15 n_{eq}/cm²)

2. Develop prototype small-pitch 3D pixels matched to FEI4
 - Pixel size 50x50 and 25x100 µm²
 - Reduced electrode distance → more radiation hard
 - Only one 50x50 µm² sensor pixel readout by 50x250 µm² chip pixel, rest shorted to ground → 20% active area
 - Double-sided 230 µm CNM run
 - This study
 - Recently produced thinner 100-150 µm single-sided 3D

3. Produce RD53A 3D pixels (on-going)
 - “Real” 50x50 and 25x100 µm²
Beam Tests and Irradiations

- **Irradiations**
 - **KIT 23 MeV p:** uniform 5e15 and 1e16 n$_{eq}$/cm2
 - **PS IRRAD 23 GeV p:** non-uniform 12 or 20 mm beam
 → allows probing a large range of fluences on single pixel device
 - Reached up to 3e16 n$_{eq}$/cm2
 - FEI4 chip survived harsh doses beyond specs in many cases! (though not all)

- **Many beam tests at CERN SPS H6, 120 GeV pions**

<table>
<thead>
<tr>
<th>Device</th>
<th>Irradiations</th>
<th>Fluence peak step [1e16 n$_{eq}$/cm2]</th>
<th>Fluence peak total [1e16 n$_{eq}$/cm2]</th>
<th>Annealing</th>
<th>Beam test</th>
</tr>
</thead>
<tbody>
<tr>
<td>7781-W4-C1, 50x50</td>
<td>PS1 20mm 2016</td>
<td>1.5</td>
<td>1.5</td>
<td>7d@RT</td>
<td>Sep 2016</td>
</tr>
<tr>
<td></td>
<td>PS3 20mm 2017</td>
<td>1.1</td>
<td>2.6</td>
<td>18d@RT</td>
<td>July 2017</td>
</tr>
<tr>
<td></td>
<td>PS4 20mm 2017</td>
<td>0.6</td>
<td>3.1</td>
<td>15d@RT</td>
<td>Not working</td>
</tr>
<tr>
<td>7781-W5-C2, 50x50</td>
<td>KIT1 2016</td>
<td>0.5</td>
<td>0.5</td>
<td>8d@RT</td>
<td>Nov 2016</td>
</tr>
<tr>
<td></td>
<td>PS3 20mm 2017</td>
<td>1.0</td>
<td>1.5</td>
<td>18d@RT</td>
<td>Not working</td>
</tr>
<tr>
<td>7781-W3-C1, 50x50</td>
<td>KIT1 2016</td>
<td>0.5</td>
<td>0.5</td>
<td>8d@RT</td>
<td>Nov 2016</td>
</tr>
<tr>
<td></td>
<td>PS2 12mm 2016</td>
<td>0.7</td>
<td>1.2</td>
<td>15d@RT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS3 20mm 2017</td>
<td>1.1</td>
<td>2.3</td>
<td>18d@RT</td>
<td>July 2017</td>
</tr>
<tr>
<td></td>
<td>PS4 20mm 2017</td>
<td>0.5</td>
<td>2.8</td>
<td>15d@RT</td>
<td>Oct 2017</td>
</tr>
<tr>
<td></td>
<td>PS5 20mm 2017</td>
<td>~0.5</td>
<td>~3.3</td>
<td>21d@RT</td>
<td>2018?</td>
</tr>
<tr>
<td>7781-W4-E, 50x50</td>
<td>KIT2 2017</td>
<td>1.0</td>
<td>1.0</td>
<td>as irrad.</td>
<td>July 2017</td>
</tr>
<tr>
<td>7781-W3-E, 50x50</td>
<td>Unirr.</td>
<td></td>
<td></td>
<td>7d@RT</td>
<td>Sep+Oct 2017</td>
</tr>
</tbody>
</table>

Many thanks to F. Ravotti, G. Pezzullo, F. Bögelspacher, A. Dierlamm
Efficiencies before Irradiation

- Test beam with EUDET/AIDA telescope
 - Reference tracks with few µm resolution
 - select Region of Interest (ROI) within active region
 and away from telescope resolution effects
 - 98% plateau efficiency starting at 0 V!
 - Consistent with high charge collection at 0 V in small-pitch 3D strips
 - Thanks to small electrode distance (28-35 µm)

J. Lange et al., 2016 JINST 11 C11024 (plus new data)

M. Manna, 30th RD50 Workshop Krakow 2017
Uniform Irradiation at KIT

- ToT and eff. very uniform over pixel: effect of 3D columns only dominant at low V
- ToT: high charge collection efficiency after irrad.
- Efficiency: already 97% at 40 (100) V for 5e15 (1e16) \(n_{eq}/cm^2\) at 0° tilt
 - Significantly better than for standard IBL/AFP FEI4
 - Further improves at 15° tilt
PS Non-Uniform Irradiation - Methodology

- Fluence normalization obtained with 20x20 mm² Al dosimetry foil
- Profile from
 - Beam profile monitors: 12-20 mm FWHM
 - Also made fluence maps by pixelating Al foil
- Beam position
 - From Al foil profile
 - For first irradiations also in-situ from pixel measurements (eff., noise, threshold before tuning, TDAC after tuning etc.)

Final fluence maps for analysed data

<table>
<thead>
<tr>
<th>PS1</th>
<th>PS3</th>
<th>PS3</th>
<th>PS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>W4-C1</td>
<td>W4-C1</td>
<td>W3-C1</td>
<td>W3-C1</td>
</tr>
<tr>
<td>1.4e16</td>
<td>2.5e16</td>
<td>2.3e16</td>
<td>2.8e16</td>
</tr>
</tbody>
</table>
PS Non-Uniform Irradiation - Uncertainties

- Introduce variations by +/- 1 mm in beam σ, beam centre offset, Al foil offset (both x, y)
- Vary in all combinations
- Determine maximum deviation from default value (envelope) for all variation combinations → take as systematic uncertainty (conservative)
- 15-20% uncertainty at highest fluence, 45% (70%) at lowest fluence for 20 (12) mm beam

![Graphs showing mean fluence uncertainty for different PS conditions and variations](image-url)
Efficiency vs. Fluence

- W4-C1 PS1
 - Large range of fluence on single device
 - Efficiency decreases with fluence at low voltage
 - Efficiency improves with voltage
 - NB: Fluence uncertainties large at low fluence range (~50%)
Efficiency vs. V Compilation

- Compile only at (or close to) highest fluence with lowest uncertainty (~15-20%)
- Also KIT uniform irradiation added
 - PS+KIT agree well at $1e16 \text{ n}_{eq}/\text{cm}^2$
- 98% plateau efficiency reached even after $2.7e16 \text{ n}_{eq}/\text{cm}^2$
Operation Voltage vs. Fluence

- $V_{97\%}$: estimate of operation voltage
- Highly improved operation voltage for 50x50 μm2 3D compared to IBL/AFP generation
- At ITk baseline fluence of 1.3e16 n_{eq}/cm2 only 100 V needed
 - Thin planar needs \sim500 V
- Even at 2.7e16 n_{eq}/cm2: $V_{97\%} < 150$ V

N. Savic et al., JINST 11 (2016) C12008

Different 3D Geometries, $d=230$ μm, 0° tilt
IV and Power Dissipation

- Important parameters for thermal run away
- From one pixel device only extractable for uniform irrad. (KIT)
 - At fixed V, $50 \times 50 \ \mu m^2$ has higher I_{leak}, but same at $V_{97\%}$
 - Power dissipation improves due to lower $V_{97\%}$
- For non-uniform PS irradiation PS, $V_{97\%}$ from test beam efficiency combined with n-irradiated 3D strip IV
- Considerably lower P than for IBL 3D gen. and planar devices ($25 \ \text{mW/cm}^2$ at $1e16 \ \text{neq/cm}^2$)
 N. Savic et al., JINST 11 (2016) C12008
Thin 3D run with small-pitch FEI4 prototypes just finished
- 100 and 150 µm single-sided on SOI wafers
- Probing and dicing on-going

3D runs with RD53A sensors on-going
- Single-sided 72, 100+150 µm on SOI and double-sided 200 µm
- 50x50 µm² 1E, 25x100 µm² 1E and 2E
- Production on-going → expected for end of year
- UBM + flip-chip to be done in-house by CNM + IFAE
 → sensors expected on time for arrival of RD53A
Conclusions and Outlook

- Studied 230 µm CNM 3D production with small pixel size up to unprecedented fluences of 3×10^{16} n$_{eq}$/cm2 beyond full ITk fluences
 - First time pixel devices irradiated to such high fluences (and survived)
 - Highly reduced operational voltage and power dissipation wrt. IBL/AFP generation and planar after irradiation
 - 98% efficiency at 0 V before irradiation
 - 97% efficiency at 100 V and 13 mW/cm2 for 1.4×10^{16} n$_{eq}$/cm2
 \rightarrow safe operation at ITk baseline fluence (1 replacement)
 - 97% efficiency reached at <150 V after 2.7×10^{16} n$_{eq}$/cm2
 - No indication that limit has been reached...

- Single-sided thin (72-150 µm) 3D productions under way at CNM
 - Also with RD53A-chip geometry in addition to FEI4 prototypes
 \rightarrow expected to have even better performance with new optimised readout chip

Unprecedented radiation hardness of 3D pixel detectors demonstrated
3D Detector Principle

- **Advantages**
 - Electrode distance decoupled from sensitive detector thickness
 - \(\rightarrow \) lower \(V_{\text{depletion}} \)
 - \(\rightarrow \) less power dissipation, cooling
 - \(\rightarrow \) smaller drift distance
 - \(\rightarrow \) faster charge collection
 - \(\rightarrow \) less trapping
 - Active or slim edges are natural feature of 3D technology

- **Challenges**
 - Complex production process
 - \(\rightarrow \) long production time
 - \(\rightarrow \) lower yields
 - \(\rightarrow \) higher costs
 - Higher capacitance
 - \(\rightarrow \) higher noise
 - Non-uniform response from 3D columns and low-field regions
 - \(\rightarrow \) small efficiency loss at 0°
Different 3D Technologies

- Double sided (available at CNM)
 - IBL/AFP-proven technology
 - No handling wafers needed → thickness limited to ≥200 µm and wafers to 4”
 - 3D columns ~8 µm diameter

- Single sided (available at FBK, SINTEF, CNM)
 - On handling wafer (SOI or Si-Si bonding) → 6” possible (FBK, SINTEF)
 - Active thickness range 50-150 µm being explored
 - Narrow 3D columns ~5 µm possible

Si-Si bonding

M. Boscardin, FBK

Double-sided

G. Pellegrini, CNM
First Small-Pixel CNM Run for HL-LHC

- Run 7781 finished in Dec 2015 (RD50 project)
- 5x 4” wafers, p-type, 230 µm double-sided, non-fully-passing-through columns (a la IBL)
- Increased aspect ratio 26:1 (column diameter 8 µm)
- **First time small pixel size 25x100+ 50x50 µm²** (folded into FEI4 and FEI3 geometries)
- Also strips and diodes down to 25x25 µm² 3D unit cell

D. Vázquez Furelos et al., 2017 JINST 12 C01026
J. Lange et al., 2016 JINST 11 C11024
Sample Characterisations

Pixel IV

- Pixel devices bump-bonded and assembled at IFAE
- IVs
 - $V_{BD} \sim 15-40$ V
 - Improved in new productions after CNM process optimization
- C < 100 fF/pixel (within RD53 limit)
- Noise 100-160 e similar to standard 3D FEI4s
- Sr90 source scans on pixels
 - Similar charge as in standard FEI4s
- Sr90 and laser scans on strips
 - 17 ke charge as expected for both 50x50 µm² and 30x100 µm² (unirr.)
 - Almost full charge even at 0-2 V → low V_{dep} due to low L_{el}
 - Uniform even after 1e16 n_{eq}/cm^2
 - Measurements up to 2e16 n_{eq}/cm^2 in progress

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25x100</td>
<td>2E 42</td>
<td>84</td>
<td>160</td>
</tr>
<tr>
<td>50x50</td>
<td>1E 37</td>
<td>37</td>
<td>105-140</td>
</tr>
</tbody>
</table>

(*) from pad diodes

D. Vázquez Furelos et al., 2017 JINST 12 C01026

Strips charge collection (unirr.)

- Strips laser scan 25x100 µm², 1e16, 150 V

Efficiency before Irradiation

- Select ROI within active region
 → avoid inactive area + telescope smearing

- Efficiency in ROI
 - 97% already from 1 V at 0°: very early depleted due to small electrode distance
 - Improvable by tilting: avoids hitting only low-efficiency regions

In-Pixel Efficiency (0° tilt)

- 50x50 1E (C)
- 25x100 2E (D)

J. Lange et al., 2016 JINST 11 C11024

Graph showing the hit efficiency vs. voltage for different samples.

15° tilt

Figure showing the active area and ROI within the detectors.
State of the Art: IBL/ AFP Generation

- 230 µm thick sensors by CNM and FBK (double-sided)
- FEI4s: 50x250 µm² 2E, 67 µm inter-el. distance
- Radiation hardness up to 5e15 n_{eq}/cm² established (IBL)
- Explored limits further with irradiations up to HL-LHC fluences
 - At 9.4e15 n_{eq}/cm²: 97.8% efficiency at 170 V!
 - Power dissipation 15 mW/cm² at 1e16 n_{eq}/cm² and -25°C

→ Good performance at HL-LHC fluences even for existing 3D generation

J. Lange et al., 2016 JINST 11 C11024