Depleted Fully Monolithic CMOS Active Pixel Sensors in High Resistivity 150 nm Technology for LHC

T. Hirono1, M. Barbero2, S. Bhat2 P. Breugnon2, I. Caicedo1, M. Daas1, Y. Degerli3, S. Godiot2, F. Guilloux3, T. Hemperek1, F. Huegging1, H. Krueger1, P. Pangaud2, P. Rymaszewski1, P. Schwemling3, M. Vandenbroucke3, T. Wang1, C. Zongde2 and N. Wermes1

1 University of Bonn
2 CPPM/Aix-Marseille Université
3 CEA/IRFU

hirono@physik.uni-bonn.de
Introduction

- CMOS active pixel sensors have sensor part and readout circuitry in one chip.

This eliminates the need for fine pitch bump bonding between sensor and readout circuitry. As a result:

- Easier to produce
- Potentially cheaper production of pixel modules
Introduction

- Particle physics experiments in high radiation and high rate environment:
 - High radiation tolerance (TID, NIEL)
 - Fast response time
 - Fast readout

<table>
<thead>
<tr>
<th></th>
<th>ATLAS-LHC</th>
<th>ATLAS-HL-LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outer</td>
<td>Inner</td>
</tr>
<tr>
<td>Timing [ns]</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Particle Rate [kHz/mm²]</td>
<td>1000</td>
<td>10000</td>
</tr>
<tr>
<td>NIEL [nₑq/cm²]</td>
<td>2x10¹⁵</td>
<td>10¹⁵</td>
</tr>
<tr>
<td>NIEL [nₑq/cm²]</td>
<td>2x10¹⁵</td>
<td>10¹⁵</td>
</tr>
<tr>
<td>TID [Mrad]</td>
<td>80</td>
<td>50-80</td>
</tr>
<tr>
<td>TID [Mrad]</td>
<td></td>
<td>>500</td>
</tr>
</tbody>
</table>

Depleted Monolithic Active CMOS Pixel Sensors (DMAPS)
 - Charge collection by drift
 - Full readout architecture
150 nm Technology

- LFoundry 150 nm CMOS: High Resistive wafer (>2kΩcm) and High Voltage
 → sufficient (~150μm) depletion
 \[d \propto \sqrt{HV \times HR} \]
- Radiation tolerant technology
- Multiple wells up to 4 wells
 → PMOS and NMOS can be used in pixel readout
 → Digital signal processing in pixel
- Large fill factor approach
 😊 Short charge collection path
 😞 Capacitance between wells requires dedicated circuitry
- Back side processing

Top view

- Readout
- Collection well (fill factor ~ 50%)

Side view

- p-substrate

- HV
150 nm Technology

- LFoudry 150 nm CMOS: High Resistive wafer (>2kΩcm) and High Voltage
 → sufficient (~150µm) depletion
 \[d \propto \sqrt{HV \times HR} \]
- Radiation tolerant technology
- Multiple wells up to 4 wells
 → PMOS and NMOS can be used in pixel readout
 → Digital signal processing in pixel
- Large fill factor approach
 ☺ Short charge collection path
 😞 Capacitance between wells requires dedicated circuitry
- Back side processing
Prototype chips

- **CCPD_LF**
 - Pixel size: 33 μm x 125 μm
 - Chip size: 5 mm x 5 mm
 - Fast R/O with FE-I4
 - Thickness: 750, 300, 100 μm
 - Bonn/CCPM/KIT

- **LF-CPIX**
 - Pixel size: 50 μm x 250 μm
 - Chip size: 10 mm x 10 mm
 - Fast R/O with FE-I4
 - Thickness: 750, 200, 100 μm
 - Bonn/CCPM/IRFU

- **LF-MonoPix (Full Monolithic)**
 - Pixel size: 50 μm x 250 μm
 - Chip size: 10 mm x 10 mm
 - Column drain R/O architecture
 - Thickness: 750, (200, 100) μm
 - Bonn/CCPM/IRFU

Sensor + Analog (Disc.)
- Pixel size: 33 μm x 125 μm
- Chip size: 5 mm x 5 mm
- Fast R/O with FE-I4
- Thickness: 750, 300, 100 μm
- Bonn/CCPM/KIT

Sensor + Analog
- Pixel size: 50 μm x 250 μm
- Chip size: 10 mm x 10 mm
- Fast R/O with FE-I4
- Thickness: 750, 200, 100 μm
- Bonn/CCPM/IRFU

Sensor + Analog + Digital
- Pixel size: 50 μm x 250 μm
- Chip size: 10 mm x 10 mm
- Column drain R/O architecture
- Thickness: 750, (200, 100) μm
- Bonn/CCPM/IRFU
Pixel design

- **Charge sensitive amplifier**
- **In-pixel 4-bit DAC for threshold trimming**
- **Hit register (1-bit counter)**
- **8-bit time stamp @ 40 MHz**
 - *Time, charge of signal*

- **Full-custom dig. circuit**
 - *Minimized area => for less C_d*
 - *Low noise circuit design for critical dig. blocks*
 - *eg. current steering logic, RAM r/o by source follower*

CCPD_LF, LF-CPIX

LF-MonoPix

hirono@physik.uni-bonn.de

11th International "Hiroshima" Symposium - Dec 10-15 2017, Okinawa, Japan
- The guard rings have been improved to increase the breakdown voltage.
- The increase of the leakage current around the full depletion voltage has been suppressed by improving the backside process.

Breakdown = 280V

measured by I. Caicedo
Pixel profile (laser response)

DUT:
- Chip: LF-CPIX
- Thickness: 100 μm
- w/o metarization
- Bias voltage: -200V
- Laser:
 - Wave length = 680 nm
 - Beam size: 2.5 μm

Row (short)

![Graph showing normalized intensity vs. position for row (short)]

- σ = 2.4 μm

Column (long)

![Graph showing normalized intensity vs. position for column (long)]

- σ = 2.5 μm

N-well

P-well

Top view

Laser

-200V

HV

100 μm

hirono@physik.uni-bonn.de
Sigma of beam profile saturates around bias voltage of 17V
→ **Full depletion** voltage = \(\sim 17V \) for the chip thickness of 100 \(\mu \)m
The prototype chips (CSA+Discr.) were irradiated with X-ray up to 50 Mrad

- Input transistor of CSA
 - NMOS
 - PMOS
 - CMOS

- Bias voltage: -100V

- Gain degradation: <5%
- Noise increase: ~30%

- No significant difference between the 3 flavors
Radiation hardness (TID)

The threshold is still tunable after TID=50Mrad ($\sigma<100e$ cf. readout noise $\approx 200e$)

• Increase of the tuned threshold dispersion is 20e
Radiation hardness (NIEL)

- The neutron irradiation test was done in JSI and the MonoPix were annealed 80min @60C

I-V curve of MonoPix

- Breakdown voltage is higher than 200V
The MPV is decreased after neutron irradiation of $1 \times 10^{15}\text{n}_{\text{eq}}/\text{cm}^2$.
Hit efficiency

- **Un-irradiated**

 Chip: MONOPIX un-irradiated
 DAC setting: default
 TH: tuned by noise + 4mV (~1750e)
 HV: -200V
 Temp: dry ice
 Source: 2.5GeV electron

- **$1 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$**

 Chip: MONOPIX irradiated
 DAC setting: default
 TH: tuned by noise (~1500e)
 HV: -130V
 Temp: dry ice
 Source: 2.5GeV electron

![Graph showing hit efficiency](image1)

99.6%

![Graph showing hit efficiency](image2)

98.9%
In the irradiated sample, the degradation of the efficiency observed not only at the corner of pixels but also in the middle of the pixel.
Time walk (preliminary)

- Measurement setup
- Time walk of seed pixel

- The time walk of MonoPix was increased after the irradiation.
 - CSA or discriminator’s degradation due to background TID of the reactor?
- This might be improved by...
 - Optimization of the parameters (current of CSA, discriminator etc)
 - Higher bias voltage, Back side process

Threshold: 1500 e
Bias: -200V (0 n$_{eq}$/cm2)
-130V (1 x 1015n$_{eq}$/cm2)
DAC setting: Default
Temperature: cooled by dry ice

2bins=98.7 ± 0.9%
2bins=83.0 ± 0.8% un-tuned!
Conclusion and outlooks

• Depleted Monolithic Active CMOS Pixel Sensors (DMAPS) in High Resistivity 150 nm Technology has been developed
 – Full monolithic readout works as expected
 – Break down voltage: >250V
 – Full depletion of 100 µm sensor: ~17V

• Radiation hardness has been tested by X-ray and neutron
 – TID
 • Degradation of gain = ~5%
 • Increase of noise = factor of 1.3
 – NIEL
 • Break down voltage still higher than 200V
 • Hit efficiency 98.9% after irradiation
 • MPV decreased → Backside process are planned
 • Time walk → optimization of operating parameters (current of CSA, Discr.)
Backup
both have
 • PMOS input transistor
 • Bias voltage: -100V

Gain degradation:
 LF-CPIX < CCPD_LF 😐
Noise increase:
 LF-CPIX ≈ CCPD_LF 😞

What makes the difference? not 100% clear ...
Pixel size, small changes in MOSFET size, global DAC of the chip, wafer, process...
Power consumption of CSA (CCPD_LF)
Change of the feedback current was measured by the pulse height and width of CSA output

- DUT: LFCPIX
- Flavor: PMOS-CSA
- Bias voltage: 100V

No change in the feedback of CSA
Measurement setup

• Laser: Wave length = 680 nm → Attenuation length of Si = 4 μm
 Beam size ~ 2.5 μm
• Chip: LF-CPIX v2 100 μm backside processed (without metallization)
 Readout: analog output of CSA

11th International "Hiroshima" Symposium - Dec 10-15 2017, Okinawa, Japan
The edge pixel collects charges created outside of the pixel matrix.
The crosstalk was observed in the neighbor pixels.

\[
\begin{align*}
\text{Signal(next row)} &= 1.8\% \\
\text{Signal(next column)} &= 0.15\%
\end{align*}
\]
Cross talk

• Capacitors between pixels cause the cross talk

\[
\text{Signal(neighbor)} = \text{Signal(laser)} \times \frac{C}{C + C_{\text{in}}}
\]

Signal(next row) = 1.8 %
Signal(next column) = 1.5 %

C(row) = 19 fF
C(column) = 1.5 fF

C (4 neighbors) = 40 fF

cf. \(C(\text{all}) = 400 \, \text{fF}\)

Measured by M. Daas and M. Loepke in Bonn

hirono@physik.uni-bonn.de

sLHC meeting – Jun 14, 2017
Threshold dispersion

- **Un-irradiated**
 - Chip: MONOPIX un-irradiated
 - DAC setting: default
 - TH: tuned by noise + 4mV
 - Flavor: CMOS-CSA, V1-D-Discr. Curr-Token In-pix
 - Enabled readout: col 16-20
 - HV: -200V
 - Temp: dry ice
 - Source: 2.5GeV electron

- **$1 \times 10^{15} \text{n}_{eq}/\text{cm}^2$**
 - Chip: MONOPIX irradiated
 - DAC setting: default
 - TH: tuned by noise
 - Flavor: CMOS-CSA, V1-D-Discr. Curr-Token In-pix
 - Enabled readout: col 16-20
 - HV: -130V
 - Temp: dry ice
 - Source: 2.5GeV electron

hirono@physik.uni-bonn.de
Noise occupancy

- **Un-irradiated**

 Chip: MONOPIX un-irradiated
 DAC setting: default
 TH: tuned by noise
 Flavor: CMOS-CSA, V1-D-Discr. Curr-Token In-pix
 Enabled readout: col 16-20
 HV: -200V
 Temp: dry ice
 Source: 2.5GeV electron

- **$1 \times 10^{15} n_{eq}/cm^2$**

 Chip: MONOPIX irradiated
 DAC setting: default
 TH: tuned by noise
 Flavor: CMOS-CSA, V1-D-Discr. Curr-Token In-pix
 Enabled readout: col 16-20
 HV: -130V
 Temp: dry ice
 Source: 2.5GeV electron
Measurement setup

MONOPIXs (irradiated, un-irradiated)

- **MIMOSA x 6**
 - Pixel size: 18.2 μm x 18.2μm
 - 1152 μs/frame (rolling shutter)
- **FE-I4 x 1**
 - Pixel size: 250 μm x 50 μm
 - Timing resolution: 25ns (triggered by scintillator + TLU)
• **Un-irradiated**

 Thickness of chip: 750µm
 Chip: MONOPIX un-irradiated
 DAC setting: default
 TH: tuned by noise + 4mV
 Flavor: CMOS-CSA, V1-D-Discr. Curr-Token In-pix
 Enabled readout: col 16-20
 HV: -200V
 Temp: dry ice
 Source: 2.5GeV electron

• **1×10^{15}n$_{eq}$/cm2**

 Thickness of chip: 750µm
 DAC setting: default
 TH: tuned by noise
 Flavor: CMOS-CSA, V1-D-Discr. Curr-Token In-pix
 Enabled readout: col 16-20
 HV: -130V
 Temp: dry ice
 Source: 2.5GeV electron

![Graph showing residual distribution with σ=35.4µm and σ=38.6µm](image)

![Graph showing residual distribution with σ=36.7µm](image)

hirono@physik.uni-bonn.de
Residual

• **Un-irradiated**

 Thickness of chip: 750um
 Chip: MONOPIX un-irradiated
 DAC setting: default
 TH: tuned by noise + 4mV
 Flavor: CMOS-CSA, V1-D-Discr. Curr-Token In-pix
 Enabled readout: col 16-20
 HV: -200V
 Temp: dry ice
 Source: 2.5GeV electron

• **$1 \times 10^{15} n_{eq}/cm^2$**

 Thickness of chip: 750um
 DAC setting: default
 TH: tuned by noise
 Flavor: CMOS-CSA, V1-D-Discr. Curr-Token In-pix
 Enabled readout: col 16-20

 HV: -130V
 Temp: dry ice
 Source: 2.5GeV electron

 ![Graph 1](#)

 Background = 0.6%

 ![Graph 2](#)

 Background = 0.3%

hirono@physik.uni-bonn.de