Development of 60µm pitch CdTe double-sided strip detector for FOXSI-3 rocket experiment

Kento Furukawa (U-Tokyo, ISAS/JAXA)

Shin'nosuke Ishikawa, Tadayuki Takahashi, Shin Watanabe(ISAS/JAXA), Koichi Hagino(Tokyo University of Science), Shin'ichiro Takeda(OIST), P.S. Athiray, Lindsay Glesener, Sophie Musset, Juliana Vievering (U. of Minnesota), Juan Camilo Buitrago Casas, Säm Krucker (SSL/UCB), and Steven Christe (NASA/GSFC)

CdTe semiconductor and diode device

Cadmium Telluride semiconductor:

- High density
- Large atomic number

High efficiency

Issue : small $\mu \tau$ product especially for holes

- Uniform & thin device
- Schottky Diode (Takahashi et al. 1998)

High bias voltage full charge collection + high energy resolution

Application of CdTe Diode Double-sided Strip Detector

Watanabe et al. 2009

"Anode(Pt): Ohmic contact

Cathode(AI): Schottky contact

Astrophysical Application

- Hard X-ray Imager(HXI)
 onboard Hitomi(ASTRO-H) satellite
- FOXSI rocket mission

Medical Application

Small animal SPECT system (OIST/JAXA)

Hard X-ray study of the Sun

Observation Target: the Sun

Corona and flare

Scientific Aim

- Coronal Heating (thermal emission)
- Particle Acceleration (non-thermal emission)

→Sensitive Hard X-ray imaging and spectral observation is the key especially for small scale flares study (micro and nano)

Soft X-ray image by Hinode (NAOJ/JAXA)

So far only Indirect Imaging

e.g. RHESSI spacecraft (Rotational Modulation collimator)

No direct imaging in hard X-ray band for solar mission

FOXSI rocket mission

FOXSI

FOXSI experiment (UCB/SSL, NASA, UMN, ISAS/JAXA) Direct Imaging Spectroscopy with Focusing Optics in Hard X-ray

Hard X-ray telescopes + CdTe focal plane detect

FOXSI's hard X-ray telescope clearly identified a micro-flare with high S/N ratio

Angular resolution:
5 arcsec (FWHM)
50µm on focal plane

Focal plane detector

Krucker et al. (2014)

FOXSI-3 CdTe-DSD for larger effective area

FOXSI-1(2012)

Si detector×7

FOXSI-2(2014)

- Si detector×5
- CdTe-DSD×2

FOXSI-3 (2018, summer)

- CdTe-DSD×6
- Si CMOS sensor

New prototype detector for FOXSI-3

(1)Spectral Performance

(2) Imaging Performance

Charge integration image <Energy selected image> \Delta E~1keV

Tungsten Mask

- pattern size 300µm
- thickness 300µm

(2) Imaging Performance

What we need is the spectrum of this region

→ photo counting image

Issue: Verification of imaging performance

- uniformity
- charge splitting

Calibration by using a high precision tungsten mask

(2) Imaging Performance

uniformity over the detector plane multi-pinholes are efficient for studying position dependence of the performance

Energy resolutions are almost constant

(2) Imaging Performance

Image of the pinhole mask(Integration)

- Charge splits even at 18 keV
- Need to find an algorithm to get an accurate position

Statistics of multi-strip events at 18 keV

Toward sub-strip resolution

	1 strip	2 strip	>3 strip
Al	54.4%	43.7%	1.9%
Pt	61.6%	32.9%	5.5%

strip1

(2) Imaging Performance

Multi-pinhole mask enables us to study the feature of double-strip events, quantitatively

strip2

50µm

50µm

double strip ratio reflects interaction position, and therefore double-strip events contain information on sub-strip position

- should be energy dependent
- calibration is going on for the launch of FOXSI-3 in Aug 2018

Conclusions

- Hard X-ray imaging and spectral observation is the key to understand the nature of the solar activity,
- The prototype of CdTe Diode Double-sided Strip
 Detector(CdTe-DSD) with fine 60µm pitch for FOXSI-3 has been
 developed and tested
- Energy resolution of 0.8 keV(FWHM)@14 keV is achieved
- With a high precision multi-pinhole mask, imaging performance better than 60µm have been verified.
- Flight detectors have been manufactured
- Calibration is going on for the launch of FOXSI-3 in Aug 2018

High Resolution CdTe

TABLE I
PROPERTIES OF THE SEMICONDUCTORS

semi-	density	Z	$E_{\rm gap}$	ϵ	X_0
conductor	$[\mathrm{g/cm^3}]$		[eV]	[eV]	[cm]
Si	2.33	14	1.12	3.6	9.37
Ge	5.33	32	0.67	2.9	2.30
CdTe	5.85	48,52	1.44	4.43	1.52
CdZnTe	5.81		1.6	4.6	
${ m HgI}_2$	6.40	80,53	2.13	4.2	1.16
\overline{GaAs}	5.32	31, 33	1.42	4.3	2.29

 $E_{
m gap}$: band gap energy

 ϵ : an ionization potential

 X_0 : radiation length