11th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD11) in conjunction with 2nd Workshop on SOI Pixel Detectors (SOIPIX2017) at OIST, Okinawa, Japan Contribution ID: 161 Type: ORAL ## Diamond detector technology; status and perspectives Wednesday 13 December 2017 11:10 (20 minutes) Detectors based on Chemical Vapor Deposition (CVD) diamond have been used extensively and successfully in beam conditions/beam loss monitors as the innermost detectors in the highest radiation areas of essentially all LHC experiments. The startup of the LHC in 2015 brought a new milestone where the first diamond pixel modules were installed in an LHC experiment (ATLAS) and successfully began taking data. As a result, this material is now being discussed as a possible sensor material for tracking very close to the interaction region and for pixelated beam conditions/beam loss monitors of the LHC/HL-LHC upgrades where the most extreme radiation conditions will exist. The RD42 collaboration at CERN is leading the effort to use CVD diamond as a material for tracking detectors operating in extreme radiation environments. During the last three years the RD42 group has succeeded in producing and measuring a number of devices to address specific issues related to use at the HL-LHC. We will present status of the RD42 project with emphasis on recent beam test results. In particular we present the latest results on material development, the most recent results on the independence of signal size on incident particle rate in poly-crystalline CVD diamond pad and pixel detectors over a range of particle fluxes up to 20 MHz/cm^2 measured, and describe the most recent devices fabricated. In addition we will present the plans for future use of the most recent devices Author: KAGAN, Harris (O) Co-author: TRISCHUK, William (University of Toronto (CA)) Presenter: KAGAN, Harris (O) Session Classification: Session10 Track Classification: New ideas and future applications