SuperKEKB and Belle II

- SuperKEKB collider at KEK
 - e^+e^- collider with \sqrt{s} of 10.58 GeV = $M_{\Upsilon(4S)}$
 - Asymmetric beam: $e^+ 4$ GeV, $e^- 7$ GeV
 - World-highest design luminosity: $L = 8.0 \times 10^{35}$ cm$^{-2}$s$^{-1}$
 - x40 larger lum. than KEKB
 - \leftarrow x20 by beam size, x2 by beam current

- Belle II experiment
 - Intensity frontier experiment to discover and understand physics beyond the SM
 - Belle II detector
 - General purpose 4 π spectrometer
 - Tolerable to high beam background
 - Improved particle identification
 - Excellent vertex resolution

- SuperKEKB and Belle II are being constructed for physics run start in 2018.
Belle II Vertex Detectors

VXD consists of two detectors:

- **PiXel Detector (PXD)**
 - Innermost 2 layers ($r = 1.4, 2.2$ cm)
 - Based on DEPFET pixels
 - Thickness $75\, \mu$m
 - Pixel size $50 \times 55\, \mu$m

- **Silicon Vertex Detector (SVD)**
 - Outer 4 layers ($r = 3.9 \sim 13.5$ cm)
 - Double-sided Si strip detectors (DSSDs)

VXD requirements
- Fast – to operate in high background environment
- Better resolution at IP – to compensate reduction of boost wrt. Belle I
- Radiation hard up to $100\, \text{kGy}$
- Self-tracking capable – to track particles down to $50\, \text{MeV}$ in p_T

Impact parameter resolution (Simulation)

- Significantly improved resolution compared to Belle ($20\, \mu$m at 2 GeV)

Poster by L. Andricek

Dec. 11, 2017
Belle II SVD Overview

- 4 layers consists of ladders
- Large outer radius for vertexing with Ks decaying in VXD volume
- Arranged in windmill shape with overlaps for alignment
- Slant shapes in FWD region for the material budget reduction.
- Average material budget: 0.7%X_0 per layer

<table>
<thead>
<tr>
<th>Layer</th>
<th>Ladder /Layer</th>
<th>Sensor/ladder</th>
<th>Origami</th>
<th>Length</th>
<th>Radius</th>
<th>Slant angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>262 mm</td>
<td>39 mm</td>
<td>0°</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>390 mm</td>
<td>80 mm</td>
<td>11.9°</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>515 mm</td>
<td>104 mm</td>
<td>17.2°</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>5</td>
<td>3</td>
<td>645 mm</td>
<td>135 mm</td>
<td>21.1°</td>
</tr>
</tbody>
</table>
SVD Silicon Sensor

DSSD (Double-sided Si strip detector)

- Strip numbers and pitches
 - 3 types of DSSD sensors

<table>
<thead>
<tr>
<th>Sensors</th>
<th>Rectangular (Large)</th>
<th>Rectangular (Small)</th>
<th>Trapezoidal</th>
</tr>
</thead>
<tbody>
<tr>
<td># of p-strips</td>
<td>768</td>
<td>768</td>
<td>768</td>
</tr>
<tr>
<td>p-strip pitch</td>
<td>75μm</td>
<td>50μm</td>
<td>50…75μm</td>
</tr>
<tr>
<td># of n-strips</td>
<td>512</td>
<td>768</td>
<td>512</td>
</tr>
<tr>
<td>n-strip pitch</td>
<td>240μm</td>
<td>160μm</td>
<td>240μm</td>
</tr>
</tbody>
</table>

Rectangular sensor (HPK)

- Thickness: 320μm
- p-side strip:
 - (large) 60mm
 - (small) 40mm

Trapezoidal sensor (Micron)

- Thickness: 300μm
- n-side strip:
 - 41mm
 - 61mm

Sensor thickness = 300-320μm
Assembly sites:
FW/BW@INFN Pisa (Italy)
L6 @Kavli IPMU (Japan,Korea)
L5 @HEPHY (Austria)
L4 @Kavli IPMU by TIFR (India)
L3 @Univ. of Melbourne (Australia)
Readout ASIC

APV25 chip

- APV25 chip
 - A high background in Belle II requires short signal shaping time and a good radiation hardness.
 - APV25 chip is a suitable solution for SVD.
 - Originally developed for CMS.

- APV25 Specification
 - # of input channels: 128 ch.
 - Shaping time: 50nsec
 - Radiation hardness: > 1MGy
 - Max. heat dissipation: 0.4W
To minimize the noise by the capacitance of the signal line, Readout chip is mounted on the Origami flex circuit glued on sensor.

Signal from p-side is readout via the pitch adapter flex wrapped at the sensor edge.

To reduce the material budget, APV chips is thinned down to 100 μm.
CO2 Cooling for Ladders

- Max. heat dissipation ~ 0.4 W/APV → 700W in total
- 2-phase (liquid and gas mixture) CO2 cooling system
 - Efficient and low mass cooling
 - Simple control of coolant temperature (only with pressure)
 - Small pressure loss in tubes
- Thin stainless tube (OD:1.6mm, thickness:0.1mm) is employed.
 - Less material budget
SVD Ladder Parts

- **Origami flex**
 - Flexible circuit to transmit detector signals to the ladder ends.

- **APV25**
 - Readout ASIC of the strips.

- **DSSD sensor**
 - HPK rectangular large L4,5,6, small L3
 - Micron trapezoidal FW in L4,5,6

- **PA0 and FlexPA (PA/PF/PB)**
 - Flexible circuit to transmit detector signals to the APV25.

- **Mechanical parts**
 - AIREX, Rib, Endmounts
Challenges in Origami Flex Production

- Origami flex production was not trivial because of:
 - Large flex size, APV thinning to 100 μm, pitch conversion 480 μm → 88 μm in small length (~6mm) on PA0, etc.

→ Several problems occurred in studies of production

- **All problems have been solved** by cooperation with companies and introducing intensive quality checks
 - More than one e-tests such as connectivity checks of all signal lines are inserted
 - Selection of thinning method and inspection of each APV after thinning
 - Hand soldering of all passive parts, not reflow
 - Improved flex design
 - etc.

→ In the end, we produced excellent quality Origamis **without any dead-ch**
Precision DSSD alignment

DSSDs are handled with precision assembly jigs ($O(50\mu m)$), on which the sensors are fixed by vacuum chucking.

Sensor fixed on a jig

Sensor placement

Sensors are aligned in $O(10\mu m)$ by a position tuning jig with monitoring through a CMM.

Gluing Quality Control

- Various parts are glued together with Araldite® 2011 → glue spread affect the wire bonding yield and pull strength
- Robotic control of glue amount and lining

Wire bonding

Bonding parameters tuned to realize $>99\%$ yield and pull strength $>>5gw$

\[
\mu_f = 10.7gw \\
\sigma_f = 0.6gw \\
(97 \text{ samples})
\]
Ladder Quality Assurance

1. Geometrical precision measured with an optical CMM
 → typical value <150μm in the xy plane and 200μm along the z axis

2. I-V curve measurement
 → Confirm the sensor functionality for biasing.

3. Electrical qualification with laser/b-source (Sr^{90})
 → check defects in the strips and particle response
Ladder Production Status

[Status As of Oct. 2017]

• FW/BW DSSD
 o BW: 100% completed
 o FW: 100% completed

• Layer-3 Ladder
 o 100% completed

• Layer-4 Ladder
 o 8 out of 10+2 ladders (75%) completed

• Layer-5 Ladder
 o 100% completed

• Layer-6 Ladder
 o 13 out of 16+4 ladders (65%) completed

• All ladder production will complete by Mar. 2018
Beam Test of SVD Ladders

- **e⁻ beam (2-5 GeV/c)** at DESY in Apr. 2016
 - Test for ladders in all 4 layers (1 ladder/layer)
 - SVD + PXD combined setup

Beam test setup
(@ DESY T24/1 hall)
Performance in Beam Test

- Very good spatial resolution: consistent with expectations
 - Layer-5 p strips: \(\sigma = 13\mu m \)
 - Layer-5 n strips: \(\sigma = 36\mu m \)
- Strip hit efficiency: > 99%

Excellent performance of ladders confirmed by the beam data
• Ladders are mounted on the structure and assembled in two halves at KEK
 o Then combined with the beam pipe and PXD
• Dedicated mount/measurement tools have been developed
• Now the first half is being assembled
 o Completed Layer 4 with cooling pipe so far
Mounted the first layer 3 ladder (Sep. 2017)

Completed layer 4 (first half) with cooling pipe (Oct. 2017)

Now mounting layer 5 ladders

SVD Schedule

Completion of 1st half shell Jan, 2018
Completion of SVD Apr, 2018
Start of VXD installation 3Q 2018
Start of physics run 4Q 2018
Partial SVD Installed in Belle II

- One sector of SVD (4 ladders) and PXD (2 ladders) has been installed in Belle II for SuperKEKB phase II operation
 - Included in the global Belle II DAQ
 - First beam collisions expected in Apr. 2018
- Full SVD and PXD will be installed in 3Q 2018, after establishing the good background condition in beam collisions in Phase II operation
Radiation Monitoring for Beam Abort

- Single Crystal Diamonds, scCVD 4.5x4.5x0.5 mm³
 - High radiation tolerance
 - Small temperature dep.
 - Simple and compact detector structure

- Current measurement with long high-quality cabling

Installation locations
- 6 + 6 diamond sensors
- SVD Layer-3 and -4
- 4 + 4 diamond sensors
- PXD-beam pipe

Prototype sensors are produced. They were tested in SuperKEKB beams.

Hit counts vs. Beam size

- $I_{HER}=540 mA$
- $I_{HER}=360 mA$
- $I_{HER}=160 mA$

BG enhancement due to Touschek effect was detected. Dec. 11, 2017
Conclusions

• SVD plays essential role in the physics program in Belle II

• All R&D needed for the SVD production have been completed and final SVD assembly is now on going.

• The good quality of assembled ladders and SVD is verified by checks of quality performed in each step of ladder parts production, ladder production, and SVD assembly.

• Phase II VXD with one SVD sector has been installed and ready for the first collision planned in Apr. 2018

• Final SVD will be installed in 3Q 2018 and physics run with full Belle II detector will start in 4Q 2018
• Old PA0 design

• Improved PA0 design
 • Thicker neck
 • Covered by coverlay
 • Laser cutting
Belle II Collaboration

784 colleagues, 106 institutions, 25 countries/regions (Nov. 30, 2017)