Optical and electrical characterization of Cadmium Telluride (CdTe) X-ray pad detectors

HSTD11 & SOIPIX2017, Okinawa

Alex Winkler

Thursday, December 14th, 2017, Session 12 – 4, ID 173

Team

Dr. Panja Luukka Helsinki Institute of Physics, Finland Dr. Jaakko Härkönen Institute Ruđer Bošković, Croatia

December 14th, 2017

- CMS pixel upgrade work
- Detector research for HL-LHC and other detector applications
- Emphasize efforts of developing detectors for medical imaging
 - Use HEP developments + effective detector materials
 - Ultra low dose imaging
 - BNCT

- Medical imaging want same thing as HEP:
 - Faster, smaller detectors
 - More pixels
 - Higher bandwidth
 - More information = spectrum/ pixel (photon counting)
 - Radiation hardness

https://i.pinimg.com/originals/93/5c/05/935c057d55aae24f412c63d5d9c23f53.png

December 14th, 2017

Detectors need to work:

- Efficient = high stopping power (calorimeter)
- RT operation
- Large volumes/ bulk detectors
- CdTe/ CdZnTe (CZT)

- → Si out → Ge out
- \rightarrow GaAs out

Detectors need to work:

- Efficient = high stopping power (calorimeter)
- RT operation
- Large volumes/ bulk detectors
- CdTe/ CdZnTe (CZT)
 - High $Z_{eff} = 50$
 - Large bandgap \rightarrow RT operation
 - High resistivity $(10^9 1.5 \ 10^{10} \,\Omega \text{cm})$ \rightarrow several cm thick detectors possible
 - Reasonably developed

→ Si out
→ Ge out
→ GaAs out

https://www.lngs.infn.it/images/ricerca/cobra/large_detectors.jpg

- ... is not Si!
 - Brittle, toxic
 - Chip scale processing
 - Not temperature stable (processing < 140°C)
 - Not every chemical works

Details in Ms. Gädda's poster (P21) and PSD11 proceedings.

- ... is not Si!
 - Brittle, toxic
 - Chip scale processing
 - Not temperature stable (processing < 140°C)
 - Not every chemical works
 - Growth defects
 - Precipitates
 - ightarrow Act like deep level defects
 - \rightarrow Reduce CCE and $\rm E_{res}$

HELSINKI INSTITUTE OF () PHYSICS

> Details in Ms. Gädda's poster (P21) and PSD11 proceedings.

DOI: 10.1109/TNS.2002.803882

- ... is not Si!
 - Brittle, toxic
 - Chip scale processing
 - Not temperature stable (processing < 140°C)
 - Not every chemical works
 - Growth defects
 - Precipitates
 - ightarrow Act like deep level defects
 - \rightarrow Reduce CCE and $\rm E_{res}$

\rightarrow Acts like highly irradiated Si

Details in Ms. Gädda's poster (P21) and PSD11 proceedings.

DOI: 10.1109/TNS.2002.803882

- ... is not Si!
 - Brittle, toxic
 - Chip scale processing
 - Not temperature stable (processing < 140°C)
 - Not every chemical works
 - Growth defects
 - Precipitates
 - \rightarrow Act like deep level defects
 - \rightarrow Reduce CCE and E_{res}

\rightarrow Acts like highly irradiated Si

Details in Ms. Gädda's poster (P21) and PSD11 proceedings.

DOI: 10.1109/TNS.2002.803882

Precipitates as key

- Precipitates dictate detector performance
 - Number
 - Size
 - Distribution
- Need to predict detector performance before production
- HOW?

Precipitates as key

- Precipitates dictate detector performance
 - Number
 - Size
 - Distribution
- Need to predict detector performance before production
- HOW?
 - \rightarrow IR microscope mapping

IR mapping

December 14th, 2017

December 14th, 2017

- 3D IR microscope
- High resolution ($\approx 210/170$ µm)
- Precipitates close to diffraction limit ≈ 1µm

- 3D IR microscope
- High resolution ($\approx 210/170$ µm)
- Precipitates close to diffraction limit ≈ 1µm
- 2/3D maps of precipitates distribution

- Scanned a few hundred crystals
- Confirm Tepper results: smaller precipitates more present
- In CdTe most precipitates are <5 μm size

FIG. 5. Histogram of the Te inclusion size distribution in CZT1 and CZT2.

Adapted from DOI: 10.1063/1.2967726

- Scanned a few hundred crystals
- Confirm Tepper results: smaller precipitates more present
- In CdTe most precipitates are <5 μm size
- ≈ exponential behavior

FIG. 5. Histogram of the Te inclusion size distribution in CZT1 and CZT2.

Adapted from DOI: 10.1063/1.2967726

- Scanned a few hundred crystals
- Confirm Tepper results: smaller precipitates more present
- In CdTe most precipitates are <5 µm size
- ≈ exponential behavior

December 14th, 2017

CdTe pad detector

December 14th, 2017

CdTe pad detector

Details in Ms. Gädda's poster (P21) and PSD11

proceedings.

ALAB

RECEIVED: August 31, 2017 ACCEPTED: November 29, 2017 PUBLISHED: ???, 2017

11TH International Conference on Position Sensitive Detectors 3–8 September 2017 The Open University, Walton Hall, Milton Keynes, U.K.

Advanced processing of CdTe pixel radiation detectors

A. Gädda, a, c, 1 A. Winkler^a J. Ott, J. Härkönen, A. Karadzhinova-Ferrer, P. Koponen, P. Luukka, J. Tikkanen^d and S. Vähänen, C

December 14th, 2017

CdTe pad detector

December 14th, 2017

December 14th, 2017

Conclusions & Outlook

- TCT: CCE is strongly location dependent
- IR: correlation of CCE map and defect map

December 14th, 2017

Conclusions & Outlook

- TCT: CCE is strongly location dependent
- IR: correlation of CCE map and defect map
- Based on defect map \rightarrow "panel mosaic"

December 14th, 2017