A prototype SOI pixel sensor for CEPC vertex

Speaker: Zhigang Wu1,2
Co-author: Yunpeng Lu1, Yang Zhou1, Jing Dong1, Longlong Song1,2, Qun Ouyang1,2

1. State Key Laboratory of Particle Detection and Electronics (Institute of High Energy Physics, CAS), Beijing 100049
2. University of Chinese Academy of Science, Beijing 100049, China
• Introduction for CEPC vertex
 – Physics driven requirements
 – Technical challenges
 – Advantages of SOI technology for tracking

• Concept of CPV2 chip

• Basic characterization
 – Sensor test
 – calibration
 – noise test

• Single point resolution measurement
 – Infrared laser test setup
 – Laser beam response
 – Measurement results

• Conclusion and outlook
Introduction

• High Energy Circular Electron Positron Collider (CEPC)
 – $e^+ e^-$ Higgs and Z factory
 – $E_{cm} \approx 240\text{GeV}$, luminosity $\approx 2 \times 10^{34}\text{ cm}^{-2}\text{s}^{-1}$ @Higgs
 – Higgs precision 1% or better
Physics driven requirements

Table 6.1 Required performance of the CEPC sub-detectors for critical benchmark Higgs processes.

<table>
<thead>
<tr>
<th>Physics Process</th>
<th>Measured Quantity</th>
<th>Critical Detector</th>
<th>Required Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ZH \rightarrow \ell^+\ell^- X$</td>
<td>Higgs mass, cross section</td>
<td>Tracker</td>
<td>$\Delta(1/p_T) \sim 2 \times 10^{-5}$</td>
</tr>
<tr>
<td>$H \rightarrow \mu^+\mu^-$</td>
<td>BR($H \rightarrow \mu^+\mu^-$)</td>
<td></td>
<td>$\oplus 1 \times 10^{-3}/(p_T \sin \theta)$</td>
</tr>
<tr>
<td>$H \rightarrow bb, cc, gg$</td>
<td>BR($H \rightarrow bb, cc, gg$)</td>
<td>Vertex</td>
<td>$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \mu$m</td>
</tr>
<tr>
<td>$H \rightarrow qq, VV$</td>
<td>BR($H \rightarrow qq, VV$)</td>
<td>ECAL, HCAL</td>
<td>$\sigma_{E_j}/E \sim 3 - 4%$</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>BR($H \rightarrow \gamma\gamma$)</td>
<td>ECAL</td>
<td>$\sigma_E \sim 16%/\sqrt{E} \oplus 1%$ (GeV)</td>
</tr>
</tbody>
</table>

- excellent tagging capability of b-/c-quark jets and τ-lepton
 - Impact parameter resolution, $\sigma(r_{\phi}) = a \oplus \frac{b}{p(GeV) \sin^{3/2} \theta} \mu$m, $a=5$, $b=10$

- Design requirements on vertex:
 - Single point resolution near the IP: ≤ 3 μm
 - Material budget: $\leq 0.15\% X_0$/layer
 - Very close to IP (<16mm)

Continuous operation with \sim500ns bunch spacing for Higgs
Technical challenges

- vertex design requirement leads to technical challenges
 - Technical target is a compromise of all design details
SOI for tracking

- Features of SOI technology for tracking
 - Full CMOS circuit at 0.2um process node
 - High resistive (up to >10kΩcm) substrate, full depletion/over depletion (large signal and fast charge collection)
 - Pixel pitch below 10um possible
 - Sensor can be thinned to ~50um
 - Double SOI wafer and process available
outline

• Introduction for CEPC vertex
 – Physics driven requirements
 – Technical challenges
 – Advantages of SOI technology for tracking

• Concept of CPV2 chip

• Basic characterization
 – Sensor test
 – calibration
 – noise test

• Single point resolution measurement
 – Infrared laser test setup
 – Laser beam response
 – Measurement results

• Conclusion and outlook
CPV2 chip concept

- Double-SOI wafer
 - Second SOI layer as shielding between Front-end and sensing diodes
 - Compensation voltage can be applied to mitigate TID effect
 - High resistive substrate: FZ(p) \(\sim 1\,\text{k}\Omega\text{cm} \)
 - Thinning the sensor down to 75um (usually 300um)
CPV2 chip concept

- Fine pitch matrix with in-pixel discriminator
 - 16µm pitch and digital readout to achieve single point resolution < 3µm
 - In-pixel discriminator to enable a low power operation in a continuously colliding mode
 - Sensing diode, amplifier, CDS stage, discriminator
 - Half of matrix are analog readout for calibration CPV2 digital blocks
Introduction for CEPC vertex
 - Physics driven requirements
 - Technical challenges
 - Advantages of SOI technology for tracking

Concept of CPV2 chip

Basic characterization
 - Sensor test
 - calibration
 - noise test

Single point resolution measurement
 - Infrared laser test setup
 - Laser beam response
 - Measurement results

Conclusion and outlook
Sensor test

• I-V curve
 – Total Leakage current reaches the plateau when bias voltage is -15V
 – No breakdown at high voltage
 – Thinning chip has larger leakage current
 – Diode current is very small both (~nA/total pixel array), below the accuracy of current meter

![I-V curve graph]

12/14/2017 HSTD11 & SOIPIX2017 @OIST
Sensor test

• 55Fe signal Efficiency versus bias voltage
 – x-ray illuminates the sensor from backside
 – plateau reached @ $V_{bias} = -30V$
 – An evidence of fully-depleted sensor

\[\eta = \int_{h-d}^{h} ue^{-us} ds = e^{-uh} (e^{\sqrt{V}} - 1) \]

\[\eta = \int_{0}^{h} ue^{-us} ds = 1 - e^{-uh} \]
Calibration

• Charge voltage factor (CVF)
 – 55Fe 5.9KeV X-ray@1640e$^-$
 – SF gain measured 0.87
 – Most probable signal amplitude around 180ADC in single pixel mode
 – A peak at 360ADC in 3×3 pixel cluster mode
 – CVF: 123.3uV/e$^-$ @source follower input

![Graph showing SF gain mean: 0.87]
Noise

• Temporal noise and FPN
 – S-curve measured on full pixel array
 – TN ~6e⁻
 – Threshold dispersion (FPN) ~114e⁻
 – Offset cancellation is needed
outline

• Introduction for CEPC vertex
 – Physics driven requirements
 – Technical challenges
 – Advantages of SOI technology for tracking

• Concept of CPV2 chip

• Basic characterization
 – Sensor test
 – calibration
 – noise test

• Single point resolution measurement
 – Infrared laser test setup
 – Laser beam response
 – Measurement results

• Conclusion and outlook
Experiment setup

- 1064nm laser beam
 - optical lens to focus laser
- 3-dimensional stepping motor
 - accuracy: 0.1um
- Thinning chip
 - wire-bonding on sub-board
 - illuminate from backside (no aluminum)
Laser beam

• Timing
 – Triggered by the frame start signal
 – Synchronized with rolling shutter readout

• Focusing with analog pixel as a monitor
 – Achieve the smallest beam cluster
 – Calibrate the equivalent electron number of laser energy

• beam waist diameter
 – 3.4μm
sensor test by laser

- Laser signal versus bias voltage
 - Inflection point $V_{bias} = -27V$
 - An evidence of fully-depleted sensor
 - Slow increasing maybe caused by signal collection efficiency
 - Choosing $V_{bias} = -100V$ in the following laser scan test
Laser scan with different laser intensity

- Scan two adjacent digital pixels
 - Step size of 1um
 - Threshold is fixed (no noise hits)

\[\text{Signal charge} = 1574e^- \]
\[\text{Signal charge} = 2308e^- \]
\[\text{Signal charge} = 3148e^- \]
\[\text{Signal charge} = 4722e^- \]

Normalized response = number of hit/number of pulse
Spatial resolution by laser

- Actual position decided by motor
- Responding position reconstructed by Center of Gravity

Signal charge = 1574e⁻

Signal charge = 2308e⁻

Signal charge = 3148e⁻

Signal charge = 4722e⁻

residual of position measurement
Spatial resolution by laser

- Spatial resolution versus signal level
 - Get the best resolution of 2.3μm at around 3000e⁻ signal level

![Graph showing spatial resolution by laser with signal level on the x-axis and spatial resolution on the y-axis, indicating a minimum resolution of 2.3μm at around 3000e⁻ signal level. The graph includes a formula: \(\frac{0.5 \text{pitch}}{\sqrt{12}} \), which represents the theoretical resolution limit.](image-url)
Conclusion and outlook

• A prototype SOI pixel sensor for CEPC vertex
 – 16um pitch and 75um thickness D-SOI chip
 – Validate the feasibility of thinning process
 – Fully depleted sensor @\(V_{\text{bias}} = -30\text{V} \)
 – Low noise (6e\(^{-}\)) of single pixel is achieved
 – The demonstration of a single point resolution below 3um

• CPV3 will follow up
 – Fix the problems in CPV2
 – Reduce the threshold distribution
 – Compatible with 3D integration
 – Characterized by particle beam test
Thanks for your attention!
Backup

- CPV2 pixel schematic
Backup

- I-V curve measurement

<table>
<thead>
<tr>
<th>diode</th>
<th>Pix_rng</th>
<th>Bpw_cir</th>
<th>IO_bpw</th>
<th>I_all</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>m</td>
<td>×</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>m</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

[Diagram of a silicon-based device with labels for diode, Pix_rng, Bpw_cir, and IO_bpw]
Backup

- TCAD simulation for charge sharing in SOI sensor
Backup

• Calculation for beam waist diameter

\[\tan \frac{\theta_0}{2} = \frac{D}{2F} \]

\[2\omega_0 = \frac{4\lambda}{\pi \theta_0} \approx \frac{4\lambda}{\pi D} \]