15 December, 2017

Plasmonic color filter for multispectral imaging from visible to near-infrared

Atsutaka Miyamichi¹, Atsushi Ono², Hiroki Kamehama¹, Keiichiro Kagawa², Keita Yasutomi², and Shoji Kawahito²

¹Graduate School of Science and Technology, Shizuoka University ²Research Institute of Electronics, Shizuoka University

Purpose

Development of multispectral imaging sensor from visible to near-infrared range.

Image sensor integrated with RGB-NIR plasmonic filters

Plasmonic filters realize the multispectral imaging of visible and NIR light by integrating onto a single image sensor.

Visible and NIR lights are filtered by our proposed plasmonic filters.

Filtering of visible and NIR lights is difficult due to external IR cut filter.

Imaging application : NIR information + RGB information

Range measurement imaging using NIR LED as light source.

Range image + Color image

IEEE Sens. J. **7**, 1578 (2007).

cf. S. Kawahito et al.,

Biological imaging for hemoglobin (HbO₂) concentration.

Color image + Tissue image

Simultaneous imaging provides reduction of conventional system size and improvement of image recognition.

Our proposed plasmonic color filter

We demonstrate plasmonic color filtering from visible to near-infrared range.

Color filtering principle by surface plasmon resonance

Transmission color selectivity is tuned by changing the corrugation period.

cf. T. W. Ebbesen et. al, SCIENCE 297 (2002)

Analysis of transmission characteristics by using FDTD algorithm

Summary of the simulation results

Filtering property:
Transmittance of ~28 %
FWHM of ~100 nm

Summary of the simulation results

Transmitted light distribution at peak wavelength λ_{peak} was calculated.

Transmission distribution for peak wavelength

Beaming transmission at peak wavelength of 650 nm.

Coupling between incident light and surface plasmon.

Corrugation vs. Flat bottom surface

Fabrication process

Nanostructured corrugations are easily fabricated on both sides of a single metal film along the resist pattern.

Transmitted light distribution of fabricated plasmonic filter

The plasmonic color filters were fabricated with period of 300 nm to 700 nm with 100 nm steps.

Transmitted light of selected wavelength was observed at the central aperture.

Multi-band color filtering from visible to near-infrared

from visible to near- infrared range.

Groove number dependence for transmission spectrum

Multi-band color filtering by plasmonic array filters

10 µm

Multi-band color transmission was observed in plasmonic array filter by increasing corrugation period.

Conclusions

- We analyzed transmission characteristics of plasmonic color filter with periodic corrugation leading to peak transmission of ~28 % by FDTD simulation.
 - The central wavelength of the filter is tunable by changing corrugation period and groove depth.
- We demonstrated the multi-band color filtering from visible to near-infrared range by our proposed corrugated metallic thin film.
 - Transmission spectral band with FWHM of ~100 nm was obtained in each plasmonic filter with a single aperture.

