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Introduction

● “Pre”cedings: arxiv 1705.10150
● Several topics covered in N. Wermes: “Pixel Detector Overview”
● Other topics have dedicated talks/posters – will point out
● Will focus this talk on readout chip developments:

● High rate and small feature size
● Total dose radiation tolerance and small feature size
● Power delivery
● Data transmission 
● Control and operation considerations, including SEU
● Practical IC design model
● Outlook: what needs rethinking? 
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Obligatory Pileup Slide
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Rate

Particles / Hits

LHC HL-LHC

* Store full time sequence of drops until trigger (not collect in a bucket)
* Can quantify rate as memory bits / area / time 

(note: no mention of pixel size)
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Readout Chip Evolution
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15 yrs ago 5 yrs ago HL-LHC

<1 Gbps/cm2 5 Gbps/cm2 40 Gbps/cm2

(looks more like commercial chip)

Another way to say memory per unit area: Logic Density. 
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Getting to Higher Logic Density

From Hiroshima 09
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Chip Concept from Pixel 2012
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One RD53A Chip Core

One flat synthesized circuit
Each pixel is different !

Whole block is stepped
and repeated

~ 200k transistors
Size chosen so it CAN  
be SPICE simulated

(routing dominated re: metal stack)
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Hit Storage Architectures

T=Transfer    W=Wait

Move all hits immediately
to a big common buffer. 
Wait for trigger there. 

W=“End of Column Buffer”

Keep hits in a local buffer.
Transfer only those triggered.

          W=“Region”
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Hit Storage Architectures 2

● Really two extremes of the same problem
● (*) See poster “A Novel Pixel Region Architecture for Pixel detector at HL-LHC...”

 

Smaller “chiplets” Bigger regions (*)

Can imagine this is a core
(not how it is in RD53)
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Radiation

FCC

CMOS technologies and power distribution
components for HL-LHC: radiation strikes back
Wednesday, 13 December 2017 09:00 (30)

F. Faccio:

Will only talk about how radiation effects have been taken into account in this talk
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Rad Hard Logic Density Scaling

65nm

130nm

0.25um
ELT

Not quite min. size due to pesky radiation damage.
But still 2-3x higher logic density than 130nm.  

28nm ? 
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Temperature, Time, Dose rate, Process

● There are many dimensions to the radiation damage problem
● They all have to be taken into account

● But if you do, you can make a pixel chip that works up to 1Grad

● Analog circuits no problem. Several test chips irradiated this high and work fine 

● Digital (small transistors)
● Operate cold and  don’t heat it up under power (just like sensors!), 
● Low dose rate caveat (see tomorrow’s talk)

● We will soon have RD53A chips working after 1Grad
● We only guaranteed specs up to 500Mrad, because that’s what we could 

simulate, and this was using pessimistic models.
● Radiation damage simulation in the digital design process is now a necessity. 

Development of more accurate models is an ongoing process. 
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Data-Simulation Comparison

● Comparison of models used in RD53A chip with test chip data.
● Ring oscillator frequency is sensitive to TID effects
● Different logic cells can be used to make ring oscillator test structures
● Models were built from single transistor data under DC worst case bias. 
● A switching transistor is less vulnerable. We see 2x less damage.
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Power distribution

● On-module power conversion needed as detectors get larger
● But not yet used in any running detector
● Will be a feature in HL-LHC ATLAS and CMS trackers

● In the case of pixels this will be done with serial power 
● In-chip DC-DC was the alternative- but was not developed to maturity
● Off-chip DC-DC not suitable for pixel modules: too massive

● Successful demonstrations of serial power since many years 
● Will not review. Will show the scheme adopted by RD53
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Resistive Serial Chain 101

Should R = Vchip/Ichip ?

Narrow operating current 
range

Significant power overhead

Low open-fault tolerance

V transients can be 
dangerous 
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Zenner-like using V-offset

R << Vchip/Ichip

Wide operating current range

Reduced power overhead

Tolerates multiple faults per 
module

Vo matching important

No different for shorted 
module 

dV << module V
(same formula, smaller R)  
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RD53A chip regulator schematic
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Data Transmission

● On-module power conversion reduces the power cable plant
● At the same time, output bandwidth goes up a lot (pileup x trigger rate)

● ATLAS IBL chip output = 160 Mbps

● HL-LHC ATLAS/CMS inner layer chip output  = 5.12 Gbps

● Direct chip to optical fiber, Grad rad hard, low power, miniature 
technology not available 

● Data cables become the dominant services mass problem 

● Solution: fit as much data as possible onto low mass cables
● Many complications to be overcome
● A very active development area
● Industry very far ahead- learning and catching up to be done
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Data Transmission Problems/R&D Areas

● Low mass, high bandwidth cables and connectors
● Many options at 1Gbps for length  ~1m.
● Few options for 5Gbps for length 1-5m.

● Reliable recovery of signals from lossy transmission lines
● Pre-emphasis and equalization
● Transmitters on modern FPGA can recover 

signals after -28bB loss. 
● With radiation, less advanced circuits, added 

clock jitter, etc, it will be challenging for us 
to achieve recovery after -20dB loss.

● High speed serialization on chip
● next slide

● Data encoding and data compression   
● 8b/10b was considered pretty advanced for HEP a few years ago
● RD53A has multi-lane 64b/66b output
● Multi-level, PAM-4, PAM-16 not yet explored
● Compression algorithms such as Huffman being explored by not yet used

Our twinax theirs

Transmiss
ion

-18dB ca
ble

Equalization

64b66b 5Gbps original

simulation

(industry)
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High Speed Serialization on Chip

● Need a high quality clock (<15ps jitter for 5 Gbps, <75ps for 1 Gbps)
● Problem: no high quality, high speed clock coming in

● Adding one means adding mass

● PLL multiplication used, but hard to achieve very low jitter, especially 
after radiation

● Need a high speed serializer that remains high speed after radiation 
damage

● Need fast recovery from SEU
● 1 Gbps seems achievable after irradiation, 5 Gbps still a challenge
● This means HL-LHC inner layer chips must have 4 output lanes
● LHCb Velopix uses 4x 5Gbps lanes, but less radiation, good incoming 

clock, and high quality output cables. 
● LpGBT can run at 10Gbps, but high speed low jitter incoming reference 

signal, and less radiation. 
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Control

● Take advantage of of high logic density to implement smarter control functions
● Chip becomes fairly intelligent and “user friendly” to control
● Learn from present operational issues and design a control protocol where they 

do not arise
● See earlier ATLAS and CMS pixel operation talks

● In general, SEU’s cause all kinds of exceptions that the DAQ protocol does not 
easily recover from. 

● Will never manage to prevent SEU- it will only get worse in the future
● Solution: design protocols that are compatible with SEU’s
● No long-term memory in the chip: refresh configuration all the time from 

outside during data taking
– “Trickle configuration” already supported in RD53A

● Make no use of counter absolute values- only differences matter so upsets fix 
themselves when counters loop. 

– “Tagged trigger” protocol already supported in RD53A
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New concerns: 
Low dose rate is not so low

Retuned at 1 
Mrad

Effect from 
temp increase 
to 20°C

1 Mrad per run at HL-LHC !   But dose rate here was ~5x higher than at HL-LHC

Threshold Dispersion vs. Dose

Automated, continual threshold self-tuning would address this
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Shift in Design Approach 
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(looks more like commercial chip)

Single 
institute
team

Nov. 2017 RD53 meeting, CERN

FE-I4

Commercial style design and validation
109 transistor Chips work the first time 
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Where next?

● Higher logic density (28nm)
● Higher radiation dose
● Smaller pixels
● More functionality

● R&D into smaller 
features

● Followed by another 
collaboration to make 
next gen. chip

Still a couple of years to go for RD53 to make production chips for ATLAS & CMS

And after that? 

What for? 

Replacement of HL-LHC inner layers, FCC
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Smaller pixels and resolution

● Refer back to W. Snoey’s talk…

● Single pixel gets “easier” due to smaller capacitance (eg. no timewalk)
● But total power budget gets more challenging

(capacitance per unit area goes up- scales with perimeter, not area)
● At what point should we go binary? 

● See poster: “Ultimate position resolution of pixel clusters with binary readout...”

● High bandwidth data transmission. Data compression.  
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Conclusions

● High rate (*) needs high logic density (hybrid>monolithic forever) 
● Digital design flow and tools needed to make 109 transistor chips 

that work the first time
● Design collaboration model probably here to stay
● High radiation needs high radiation tolerance- 

● Some tension with high density- see F. Faccio’s talk

● High logic density comes with huge functionality potential- have to 
keep thinking of what to do with it

● (*) readout bandwidth limited. Will likely stay that way


